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MD simulations

Acetone in water

Molecular dynamics (MD) simulations of 1 TEMPOL, 1029 acetone and 7433 water molecules

in a cubic box were carried out with NAMD.S1 The parameters of acetone and (TIP3P) water

were from the CHARMM36 molecular force filed.S2 Parameters of TEMPOL have been

developed previously.S3 Temperature of 25 ◦C and pressure of 1 atm were maintained with

Langevin thermostat and barostat. The average box size was 6.98 nm, leading to acetone

concentration of 5 M, in agreement with experiment.S4 In order to reproduce the experimental

translational diffusion constant of acetone in water reported to be D = 1.10 nm2/ns,S4 the

friction coefficient of the Langevin thermostat was chosen as 4.35 ps−1.S5 The resulting

coefficients of translational diffusion of acetone and TEMPOL are given in Table S1. MD

simulations were carried out for 10 ns and coordinates were recorded every 0.2 ps, yielding

50 thousand snapshots for analysis.
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In addition to the translational diffusion of the molecules in the liquid, their rotational

diffusion is also expected to influence the frequency-dependence of the dipolar interaction

between the electron and nuclear spins. Therefore, the time scales of rotation should also be

assessed. We have previously reported such an assessment for pure acetone.S5

Table S1: Diffusion coefficients (nm2/ns) as obtained from the MD simulations.

Dsolvent DTEMPOL

5 M acetone (in water) 1.10± 0.01 0.43± 0.13
chloroform 2.86± 0.44 2.62± 1.19

Chloroform

MD simulations of 1 TEMPOL and 2741 chloroform molecules, with chloroform parameters

obtained from the literature,S6 were performed at 25 ◦C and 1 atm, yielding an average box

size of 7.17 nm. A thermostat friction of 0.014 ps−1 was employed to match the experimental

diffusion coefficient of chloroform (D = 2.8 nm2 ns−1).S7 The resulting diffusion coefficients

of chloroform and TEMPOL are given in Table S1. The MD simulations were carried out for

a total duration of 10 ns. Snapshots were saved every 0.1 ps, yielding 100 thousand frames

for analysis.

The fidelity of the orientational motion of the simulated chloroform molecules was as-

sessed through an analysis of the complex frequency-dependent dielectric response.S5 To this

end, the time correlation function (TCF) for the electric dipole moment of the simulated

system is calculated as follows:

Φ(t) =
〈
M(τ)M(t+ τ)

〉
τ
. (1)

Here M(t) is the total dipole moment vector of the simulation box at time t, and pointed

brackets indicate averaging over the time τ . Assuming rotationally isotropic motion, cross

terms between Cartesian coordinates are zero and another average can be taken over the

three Cartesian coordinates.
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The frequency-dependent dielectric function can be written as

ε(ω) = ε(∞)− 1

V kBTε0

∫ ∞
0

Φ̇(t)e−iωtdt, (2)

where V is the volume of the simulation box, kB is Boltzmann’s constant, T is temperature,

ε0 is the permittivity of free space, and the dot above Φ indicates a derivative with respect to

time. We fit the TCF obtained from the MD simulations to a sum of decaying exponential

functions:

Φ(t) =
∑
i

aie
−t/τi . (3)

With the magnitudes ai having dimension of Debye squared, a good fit to the TCF of

chloroform was obtained with two exponentials: a1 = 3346.5, τ1 = 5.223 ps and a2 = 447.83,

τ2 = 15.32 ps. Then the real (ε′) and imaginary (ε′′) parts of the dielectric function become:

ε(ω) = ε′ + iε′′ =
[
ε(∞) +

∑
i

ai
1 + (τiω)2

]
+ i
[
ω
∑
i

aiτi
1 + (τiω)2

]
. (4)

In Fig. S1 we compare the calculated real and complex parts of the dielectric response

function with experiment.S8

Although in our previous analysis of pure acetone we had ε(∞) = 1,S5 the experimental

data of chloroform (black symbols) shows that ε(∞) = 2.26. To plot the dielectric response

according to the MD simulations (solid green lines), the experimental value of ε(∞) was used

together with the ai and τi values obtained from the fit to the TCF. Clearly, the magnitude

of the calculated complex response function is larger than the experiment. Indeed, while

the experimental dielectric constant is ε(0) = 4.72,S8 the MD-deduced value, obtained after

adding ε(∞) = 2.26, is ε(0) = 5.30.

Although the dielectric properties of the simulated chloroform liquid are important, our

main goal is to assess the time scales of the rotational motion of the solvent molecules. In

order to directly compare the times scales of the dielectric response, we rescale the magnitude
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of the MD-estimated ε(ω) such that it produces the correct zero-frequency value ε(0) = 4.72.

The imaginary and real parts of the rescaled function are shown in Fig. S1 with dashed green

lines. They are seen to be in almost perfect agreement with experiment, demonstrating that

the frequencies of rotation of the simulated chloroform molecules are quantitatively realistic,

in spite of the fact that the magnitude of the electric dipole moment is somewhat larger than

what it should be.
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Figure S1: (a) Imaginary and (b) real part of the dielectric response function for chloroform.
Experimental data are shown with black symbols. Debye fit to the experimental data,
yielding ε(∞) = 2.26, is shown with black solid line. Green solid lines correspond to the
functions in square brackets in (4) plotted using ai and τi deduced from fit to MD and ε(∞)
from experiment. The dashed green lines are the MD estimate of ε(ω), after rescaling such
that it matches the experimental zero-frequency value ε(0) = 4.72.
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DFT calculations

Acetone in water

All DFT calculations were performed using the package Gaussian 09.S9 For each MD snapshot

the coordinates of the 2 acetone and 15 water molecules that were closest to the TEMPOL

oxygen atom were retained in the DFT calculation. (The identity of these molecules could

change from one snapshot to the next.) The geometries of these molecules were used as

as, without optimizing the molecular structures or their relative positions. A continuum

polarization model (PCMS10) with ε = 62.5, corresponding to a 1:3 acetone-water mixture,

was employed to account for the dielectric properties of the solution.

Fermi contacts were obtained with the EPR-II basis setS11 using either B3LYP or BLYP

as density functionals. 5000 consecutive MD snapshots, amounting to a total duration of 1

ns, were analyzed with B3LYP. Twice as much (10000) consecutive snapshots, corresponding

to 2 ns of molecular dynamics, were analyzed with the BLYP functional. All the calculated

Fermi contacts are shown against the distance between the 13C nucleus and the oxygen of

TEMPOL in Fig. S2. Here, the Fermi contacts of the carbonyl carbon (a) are above the

values of the methyl carbon (b). Somewhat larger Fermi contacts are obtained with BLYP

(right) instead of B3LYP (left).

In the case of BLYP, DNP coupling factors were also obtained using only the first 5000 or

only the second 5000 snapshots in order to asses the statistical uncertainty in the estimates

due to the finite number of calculated Fermi contacts. (The results are shown in Table S5.)
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Figure S2: Calculated Fermi contacts for (a) the carbonyl and (b) the methyl carbons of
acetone in water. The commonly assumed exponential decay with the distance of the nuclear
spin from the electron spin is not observed. Smaller Fermi contacts are obtained with B3LYP
(left) compared to BLYP (right).

Chloroform

Because EPR-II is not applicable to chlorine, TZVPS12 was employed as basis set. Fermi con-

tacts were calculated for one MD snapshot by retaining an increasing number of chloroform

molecules (from 1 to 15), in addition to TEMPOL, in the DFT calculation. The calculated

Fermi contacts with the carbon on the closest chloroform demonstrate that the numerical

values converge quickly with as little as 2 chloroforms present explicitly in the DFT calcu-

lation (Fig. S3). Nevertheless, for each MD snapshot we performed a DFT calculation with

the 10 chloroform molecules closest to the TEMPOL oxygen explicitly present.

The continuum polarization model SMDS13 with ε = 4.7 was employed to account for the

dielectric effect of the rest of the chloroform molecules in the solution. The SMD model was

observed to yield slightly larger Fermi contacts in comparison with the PCM model that was

employed for the acetone-water mixture above (Fig. S3). However, the difference is much
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smaller compared to the difference between B3LYP and BLYP.
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Figure S3: Fermi contact of carbon at the nearest chloroform calculated with increasing
number of chloroform molecules around TEMPOL explicitly present in the DFT calculation.
The level of theory is either B3LYP/TZVP or BLYP/TZVP, as indicated. The dielectric
properties of the environment are accounted for with the continuum dielectric models PCM
or SMD.

Fermi contacts from 5000 consecutive MD snapshots (total duration of 0.5 ns) were

calculated with B3LYP/TZVP. Again, twice as much (10000) consecutive snapshots were

analyzed with BLYP/TZVP. All the calculated Fermi contacts are shown in Fig. S4. In this

case, BLYP produces significantly larger Fermi contacts than B3LYP. The magnitudes of the

Fermi contacts vary in a complex manner with the distance of the nucleus from the oxygen

atom of TEMPOL, making it difficult to model the scalar interaction analytically.

To assess the uncertainty of the estimated DNP coupling factors due to the finite number

of DFT calculations, coupling factors were obtained by using only the first half (5000) or

the last half (5000) of the Fermi contacts calculated using BLYP. The results are shown in

Table S6.
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Figure S4: Calculated Fermi contacts as a function of the distance from the chloroform
carbon to the TEMPOL oxygen. The functional BLYP (right) produces drastically larger
Fermi contacts compared to B3LYP (left).

Calculation of the spectral density functions

Dipolar SDF

The calculation of the spectral density function (SDF) of the dipolar interaction has been

described on several occasions before.S5,S14,S15 In brief, dipolar interactions to nuclei on

solvent molecules that are close in space to the free radical are calculated from the positions

in the MD simulations. Dipolar interactions to more distant nuclei, all the way to infinity,

are accounted for analytically. For this purpose, an imaginary sphere with radius d around

the free radical is constructed during the analysis of the MD trajectories (Fig. S5). Defining

the inside of the sphere as near region (N) and outside as far region (F), four different time

correlation functions (TCFs) are possible according to the region at some time, and time t

later. The total dipolar TCF is the sum of these four contributions:

Cdip(t) = CNN(t) + 2CNF(t) + CFF(t), (5)

where, due to time reversibility, CFN(t) = CNF(t) was invoked. Only CNN(t) and CNF(t)

are obtained from the MD simulations. CFF(t) is calculated analyticallyS14 within the as-
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sumptions of the model of diffusing hard spherical molecules with centered spins (HSCS

model).S16,S17

near region (N)

far region (F)

Analytical

(HSCS)

MD

r = d

Figure S5: Partitioning of the space around the polarizing agent (dark circle) into near
(r < d) and far (r > d) regions on the basis of the distance r between the free radical
and the solvent molecule.S18 Trajectories of solvent molecules that are in N at two instances
separated by time t (blue path) contribute to CNN(t). Solvent molecules starting in N and
moving to F in time t (red path) contribute to CNF(t). Molecules that are in F at the
beginning and end of a time interval of duration t (green path) contribute to CFF(t). In our
analysis d = 2.5 nm for both acetone in water and chloroform.

The TCFs CNN(t) and CNF(t) are calculated from the recorded MD coordinates as follows:

Cm
dip(t) =

2π

5
(δIS)2〈Fm

dip(τ)Fm
dip(τ + t)〉τ . (6)

Here, Fm
dip(t) = Fm

2 (r(t)) are the rank-2 solid harmonics, calculated from the spherical polar

components of the distance vector between the nuclear and electron spins, r = (r, θ, φ), as

Fm
2 (r) =

Y m
2 (θ, φ)

r3
. (7)

The prefactor δIS = (µ0/4π)h̄γIγS in (6) has the value of 1.249 × 10−4 nm3/ns for 13C.

The pointed brackets indicate averaging over the ensemble of molecules and over the time

τ . For isotropic liquids the TCFs for m = 0, 1 and 2 are all equal, thus the superscript

can be dropped. The SDFs corresponding to CNN(t) and CNF(t) are obtained by taking the
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Fourier-Laplace transform:

JXX
dip (ω) =

∫ ∞
0

CXX
dip (t)e−iωtdt, XX = NN,NF. (8)

To perform the Fourier transformation, the near-near (NN) dipolar TCF is first fitted to a

sum of exponential decays,

CNN(t) =
∑
i

aie
−t/τi , (9)

and subsequently Fourier-transformed as

JNN(ω) =
∑
i

aiτi
1 + (ωτi)

. (10)

The fitting parameters for the methyl (CH3) and carbonyl (CO) carbons of acetone, as well

as the carbon of chloroform (C) are given in Table S2. The MD estimates and the best

multiexponential fits are shown in Fig. S6a.

Table S2: Multi-exponential fit parameters ai (nm−3) and τi (ps) for the dipolar near-near
TCFs of carbons of acetone (CH3 and CO) and chloroform (C). The prefactors (2π/5) and
(δIS)2 in (6) are not included in the fits.

CH3 CO C
i ai τi ai τi ai τi
1 1.557 0.897 0.737 1.111 0.680 0.731
2 2.537 9.640 2.316 15.18 1.874 6.730
3 2.722 44.76 2.241 52.38 2.771 22.98
4 0.289 204.2 0.218 229.7 0.261 90.31
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Figure S6: (a) Near-near (NN) and (b) near-intermediate (NM) dipolar TCFs of acetone
(main figures) and chloroform (insets). Solid lines show TCFs calculated using the actual
positions of CH3 (green), CO (blue) of acetone, and C of chloroform (cyan). Black dashed lines
in (a) show their exponential fits. Red solid lines indicate TCFs calculated by pretending
that the nuclear spins are at the centers of mass (COM) of the solvent molecules. The actual
spin position becomes immaterial at sufficiently large distances, as demonstrated by CNM(t)
in (b).
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Due to the limited size of the MD simulation box, only molecules within a distance less

than the simulation box will contribute to the MD estimate of CNF(t). Formally, however,

CNF(t) should include the contribution of molecular trajectories reaching beyond the MD

box, in principle going all the way to infinity. We, therefore, realize that CNF(t) cannot be

estimated directly from MD simulations. To overcome this problem, we introduce another

auxiliary sphere centered at the free radical and having a radius r = a (Fig. S7). When

calculating TCFs from the MD trajectories we pretend that molecules crossing the surface

of this outer sphere disappear. This amounts to an absorbing boundary condition at r = a.

We refer to the region between the boundary at r = d and the outer boundary at r = a as

the intermediate (mid) region (M).

near region (N)

mid region (M)

HSCS

MD → HSCS

MD

r = a

r = d

Figure S7: Partitioning of the space around the polarizing agent (dark circle) into near
(r < d) and mid (d < r < a) regions, where the boundary r = a is absorbing.S14 In our
analysis a = 3.4 nm for acetone in water and a = 3.5 nm for chloroform.

The correlation function CNM(t) obeying the absorbing boundary condition can be ac-

curately determined from MD simulations that are finite in spatial extent (Fig. S6b). On

the other hand, the corresponding dipolar SDF JNM(ω) can be obtained analytically within

the classical HSCS model but subjected to to an absorbing boundary condition at r = a

(denoted as HSCSa).S14 The resulting analytical expression is parametrized by a diffusion

constant D, and a “distance of closest approach” b. Fits to the MD-estimated JNM(ω) by the

S12



HSCSa model are shown in the inset of Fig. S8. The best-fitting parameters are given in the

NF column of Table S3. The desired SDFs JNF(ω), which correspond to an infinite region F,

are obtained by letting a → ∞ in the analytical expressions of the fitted JNM(ω). Thus, in

a sense, we use the analytical expression of the HSCSa model to “unfold” the finite-extent

JNM(ω) to an infinite-extent JNF(ω).
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Figure S8: NN (main figure) and NM (inset) dipolar SDFs are in color. Their fits with the
b and D parameters given in Table S3 are shown with black dashed lines.

Table S3: The fit parameters b (nm) and D (nm2/ns) for acetone and chloroform.

NN NF FF

Acetone
b 0.44 0.46 0.50
D 1.35 1.70 1.53

Chloroform
b 0.46 0.50 0.52
D 3.00 3.45 5.48

The same “unfolding” to infinite space should be applied even to the MD-estimated

JNN(ω) since, in principle, molecular trajectories that contribute to CNN(t) can cross into

the F region and come back (Fig. S5, blue path). However, because the analytical HSCSa

model assumes that the spins are at the centers of the (spherical) molecules, to perform this

“unfolding” we calculate auxiliary CNN(t) from the MD trajectories by pretending that the

spins are at the centers of mass of the solvent and TEMPOL molecules (Fig. S6, dashed red

lines). Clearly, the actual spin locations on the molecules become immaterial once the spins
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are at a sufficiently large separation (Fig. S6b). MD-estimated JNN(ω) calculated from the

center-of-mass (COM) positions can be fit directly with the analytical expression from the

HSCSa model. These fits are shown in Fig. S8 and the best-fitting parameters are given in

the NN column of Table S3.

After appropriately “unfolding” the MD-based JNN(ω) and JNF(ω), and calculating

JFF(ω) using the HSCS model, the final dipolar SDF is obtained by adding all these contri-

butions:

J(ω) = JNN(ω) + 2JNF(ω) + JFF(ω). (11)

The functions J(ω) obtained for the two types of carbons of acetone and the carbon of

chloroform are plotted with solid black lines in Fig. 3 of the main text.

Scalar SDF

Unlike the dipolar interaction, the scalar interaction is short-ranged. Therefore, for the scalar

interaction, any reasonably-sized MD simulation box should automatically be “sufficiently

large” such that applying the two-region unfolding procedure described above becomes un-

necessary. Thus, it should be possible to base the estimate of the scalar TCF on the MD

trajectories as such without any finite-size correction.

The Fermi contact depends on the electron spin density at the positions of the nuclei of

interest. While the nuclear positions can be obtained from the MD snapshots, the deter-

mination of the electron spin density requires genuinely quantum mechanical calculations.

For the treatment of the scalar interaction, therefore, we introduced a quantum region in

which the free radical and a few solvent molecules around it are modeled in greater (quan-

tal) detail than available from the (classical) MD simulations (Fig. S9).S19 Differently from

the near and mid regions introduced previously for the analysis of the dipolar interaction,

the quantum region was not defined by a fixed distance from the center of mass of the free

radical. Instead, a fixed number of solvent molecules whose centers of mass were closest to
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the nitroxide oxygen atom, as well as the free radical itself, were included in the quantum

region.S19 With the so-defined quantum region, the scalar interaction between a given nu-

cleus and the electron spin is either taken from the quantum mechanical (DFT) calculation

if the nucleus is in the quantum region, or is automatically assigned as zero if the nucleus is

outside the quantum region.

quantum

region

near region (N)

mid region (M)

HSCS

MD → HSCS

MD

MD+QM

r = a

r = d

Figure S9: A schematic depiction of the quantum region (red) containing only a few solvent
molecules closest to the oxygen atom of the nitroxide free radical. The scalar interaction is
computed with ab initio calculations of the molecules in the quantum region as extracted
from the MD snapshots. Thus, scalar SDF is obtained by combining the MD simulations
with quantum mechanical calculations (MD + QM). The other two regions are necessary for
the calculation of the dipolar SDF.

The time series of the Fermi contacts along the molecular trajectories, obtained either

from DFT calculations or assigned as zero, are used to calculate the scalar TCFs as

Ciso(t) =
(2π)2

NI

〈Aiso(τ)Aiso(τ + t)〉τ . (12)

Here, Aiso(t) denotes the Fermi contact at time t in units of MHz, the prefactor (2π) converts

the units from Hz to rad/sec, the angular brackets denote averaging over the ensemble of

molecules and over the time τ , and NI is the number density of the nuclear spins. The

resulting TCF is fitted to a sum of decaying exponential functions, as in the dipolar case.
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The TCFs for the three studied 13C nuclei and their multiexponential fits are shown in Fig.

S10. The corresponding fitting parameters are given in Table S4.
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Figure S10: Scalar TCFs for (a) CH3 and (b) CO of acetone, and (c) carbon of chloroform are
shown with colored solid lines and their exponential fits with dashed black lines. The same
TCFs are shown for longer times in the insets. Fermi contacts calculated with the density
functional B3LYP lead to the TCFs shown in red. The functional BYLP consistently leads
to larger inter-molecular Fermi contacts, which produce the TCFs shown in blue.

The scalar TCFs obtained from DFT calculations with BLYP (blue lines) and B3LYP (red

lines) are considerably different. As manifested by the exponential fit parameters, not only

are the timescales of decay obtained from BLYP somewhat larger than those from B3LYP,

but the magnitudes of the TCFs produced by BLYP are almost twice as large compared to

those obtained using B3LYP.

When we compare the TCFs of different nuclei, C of chloroform is about 30 times larger

than CH3 of acetone, and 3 orders of magnitude larger than CO of acetone. The scalar SDFs
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Table S4: Multi-exponential fit parameters ai (nm−3) and τi (ps) for the scalar interaction
for carbons of acetone (CH3 and CO) and chloroform (C).

CH3

B3LYP
ai 0.093 0.034 0.015 0.003
τi 0.110 1.599 7.918 131.2

BLYP
ai 0.154 0.059 0.033 0.011
τi 0.123 1.768 8.525 88.94

CO

B3LYP
ai 0.005 0.001
τi 0.090 1.070

BLYP
ai 0.010 0.002
τi 0.105 1.884

C
B3LYP

ai 1.045 0.454 0.348 0.359
τi 0.107 0.450 3.422 25.07

BLYP
ai 5.039 1.626 2.038 0.020
τi 0.151 3.421 25.31 76.15

are obtained from the scalar TCFs via one-sided Fourier transform:

K(ω) =
∫ ∞
0

Ciso(t)e
−iωtdt. (13)

Consequently, the scalar SDF of the carbon of chloroform is much larger than the scalar

SDFs of the carbons of acetone (as shown in Fig. 3 of the main text).

Statistical uncertainty of the calculated coupling factors

In order to examine the statistical uncertainty of our estimated coupling factors due to the

finite number of MD snapshots analyzed with DFT, the 10000 consecutive Fermi contact

series were divided into two equal parts and analyzed separately. In the case of acetone,

where coordinates were saved every 0.2 ps, each fragment of 5000 consecutive snapshots

amounted to a duration of 1 ns. For chloroform, each fragment of 5000 consecutive snapshots

amounted to a total duration of 0.5 ns because coordinates were saved every 0.1 ps.

The coupling factors of acetone calculated separately from the two fragments (1 and 2)

are given in Table S5, which also contains the coupling factors calculated from the entire

10000 snapshots (1&2). The differences are tiny for the carbonyl carbon of acetone (CO).
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However, this is due to the negligibly small contribution of the scalar interaction. The

contribution of the scalar coupling to the DNP of the methyl carbon of acetone is larger,

thus we see larger differences between the coupling factors calculated from 5000 snapshots

only.

The standard deviations (∆) of the two independent 1 ns values are also included in the

table. Note that the values of ∆ obtained from the coupling factors determined independently

from the two fragments, overestimate the actual uncertainties of the coupling factors that

are obtained from the snapshots in both fragments by about a factor of
√

2.

The coupling factors calculated from two 0.5 ns fragments, and total 1 ns fragment of

the chloroform trajectory are given in Table S6. The standard deviation between the two

fragments is largest at 0.35 T and drops at the higher frequencies.

Table S5: DNP coupling factors (%) at 25 ◦C calculated for 5 M acetone in water. Dipolar
SDF is obtained from the analysis of the entire 10 ns MD trajectory. Scalar SDF is obtained
from the specified trajectory fragments. Fermi contacts were computed using the BLYP
functional.

fragment 0.35 T 1.2 T 3.4 T 9.2 T 16.4 T

CO

1 (1 ns) 15.4 2.98 0.69 0.14 0.03
2 (1 ns) 15.2 2.84 0.63 0.12 0.01

1&2 (2 ns) 15.3 2.91 0.66 0.13 0.02
∆ 0.1 0.07 0.03 0.01 0.01

CH3

1 (1 ns) 5.15 −2.27 −1.88 −0.95 −0.77
2 (1 ns) 3.34 −3.30 −2.39 −1.21 −1.01

1&2 (2 ns) 3.90 −2.67 −2.18 −1.07 −0.90
∆ 1.3 0.73 0.36 0.18 0.17

Table S6: DNP coupling factors (%) at 25 ◦C for TEMPOL in chloroform. Dipolar SDF is
obtained from the analysis of the entire 10 ns MD trajectory. Scalar SDF is obtained from
the specified trajectory fragments. BLYP functional is used in all DFT calculations.

fragment 0.35 T 1.2 T 3.4 T 9.2 T 16.4 T

1 (0.5 ns) −74.1 −63.1 −42.7 −27.0 −22.6
2 (0.5 ns) −80.7 −64.5 −43.7 −26.0 −21.2
1&2 (1 ns) −78.2 −64.3 −42.8 −26.3 −22.1

∆ 4.7 0.99 0.71 0.71 0.99
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Validation of the point-dipole approximation

In addition to Fermi contacts (i.e., isotropic scalar couplings) DFT calculations also provide

anisotropic hyperfine (i.e., dipolar) couplings. This allows us to investigate the accuracy of

the point dipole approximation. When calculating dipolar TCFs from the atomic coordi-

nates in the MD trajectories, we treat the electron spin as localized at the oxygen (50%)

and nitrogen (50%) atoms of TEMPOL. However, the DFT calculations clearly show that

the spin density is delocalized in space (see insets of Figs. 1c and 4b in the main text). Such

delocalization is the reason for large Fermi contacts. As a result, the point-dipole approxi-

mation of the electron spin is expected to fail to describe the dipolar interaction with nearby

nuclear spins.
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Figure S11: The dipolar and scalar couplings to a carbon of chloroform. In (a), the dipolar
constants are calculated using the point-dipole approximation. Their difference from the
coupling constant taken directly from the DFT calculations (i.e., without the point-dipole
approximation) are given in (b). The Fermi contacts of the same atom are given in (c). Using
the functional BLYP in the DFT calculations leads to systematically larger Fermi contacts
compared to B3LYP.

Figure S11c shows the temporal variation of the Fermi contacts with the 13C nucleus
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on one chloroform molecule obtained from the DFT calculations over a time interval of 150

ps. (The same Fermi contacts are shown in Fig. 4 of the main text.) The solid harmonics

describing the dipolar interaction between the electron spin and the nuclear spin of the

same carbon atom over the same time period are given in Fig. S11a. These, however,

were calculated from the distance vector between the atomic positions using (7). In other

words, they reflect the dipolar interaction according to the point-dipole approximation. The

same solid harmonics, but reflecting the dipolar coupling without assuming the point-dipole

approximation, can be extracted from the anisotropic hyperfine couplings reported in the

output files of the DFT calculations. (These are given in Fig. 4a of the main text.) The

differences between the DFT and point-dipole values of Fm
dip are plotted in Fig. S11b. As

expected, the point-dipole approximation fails at the instances exhibiting substantial Fermi

contacts. On the other hand, the performance of the approximation is seen to be acceptable

for the instances of small Fermi contacts. This implies that it can be safely used for molecules

outside the quantum region, where the scalar couplings are vanishingly small anyway.

Although we have demonstrated the limitations of the point-dipole approximation, what

matters from a practical point of view is the impact of the approximate treatment on the

calculated DNP coupling factors. In order to assess the error in the predicted coupling factors

caused by using the point-dipole approximation, we calculated dipolar TCFs from the 1-ns

fraction of the MD simulation of TEMPOL in chloroform for which DFT calculations were

carried out. The TCFs shown in red in Fig. S12 were calculated from the distance vector

using the point-dipole approximation. In contrast, when calculating the TCFs shown in

blue, the dipolar coupling constants were taken directly from the DFT calculations when the

molecule was in the quantum region, and calculated using the point-dipole approximation

when the molecule was outside the quantum region. A small difference is observed between

the near-near (NN) TCFs, while the near-intermediate (NM) TCFs are practically identical.

DNP coupling factors were calculated using either one or the other of the two TCFs in

Fig. S12 in order to assess the error due to the point-dipole approximation. Note that, in
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this case, only 1 ns of the MD trajectory is used to calculate both the dipolar and the scalar

spectral densities. The resulting coupling factors are given in Table S7. The differences

between the coupling factors are seen to be small and less than the statistical uncertainties

estimated in Table S6. Thus, although the methodology we have developed allows us to go

beyond the point-dipole approximation when calculating the dipolar SDF, we find that the

statistical uncertainty due to estimating the scalar SDF from only 10000 MD snapshots is

larger.
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Figure S12: Near-near and near-intermediate (inset) dipolar TCFs of chloroform obtained
from a 1 ns fragment of the MD trajectories. The contributions of molecules in the quantum
region are calculated by using the point-dipole approximation (red) and DFT calculations
(blue).

Table S7: DNP coupling factors (%) of chloroform calculated from 1 ns fraction of the MD
simulations. Dipolar contributions for the molecules in the quantum region are calculated
by either point-dipole approximation or DFT calculations. BLYP functional is used in all
DFT calculations.

Field (Tesla) 0.35 1.2 3.4 9.2 16.4

point dipole −78.2 −64.8 −43.4 −26.9 −22.6
DFT + p.d. −77.8 −64.4 −43.1 −26.6 −22.4

∆ 0.3 0.3 0.2 0.2 0.14

We can also compare the coupling factors produced from dipolar analysis of 1 ns MD

trajectory (Table S7) and the entire 10 ns trajectory (Table S6). For all examined magnetic

fields the difference is less than 1%, suggesting good convergence of the dipolar SDF in 1
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ns. Therefore, we conclude that the estimate of J(ω) from the full 10 ns simulation must be

rather precise.
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