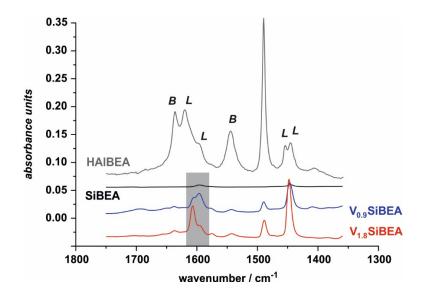

Physical Chemistry Chemical Physics Electronic Supplementary Information


Paramagnetic dioxovanadium(IV) molecules inside the channels of zeolite BEA – EPR screen of VO₂ reactivity toward small gas-phase molecules

Piotr Pietrzyk,*^a Kinga Góra-Marek^a

^aFaculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, POLAND. E-mail: pietrzyk@chemia.uj.edu.pl

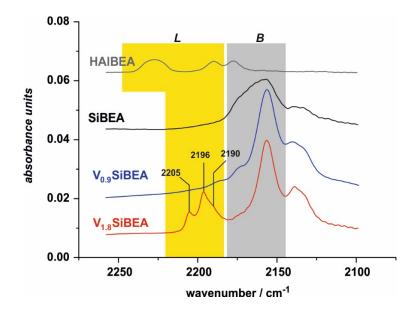

Figure 1S. IR spectra of native HAIBEA zeolite sample, dealuminated SiBEA, and vanadium-loaded samples V_{0.9}SiBEA and V_{1.8}SiBEA.

Figure 2S. IR spectra of pyridine adsorption on native HAIBEA zeolite sample, dealuminated SiBEA, and vanadium-loaded samples $V_{0.9}$ SiBEA and $V_{1.8}$ SiBEA. *B* – bands due to Broensted centers, *L* – bands due to Lewis centers. Highlighted is the spectral region characteristic of vanadium-Py adducts (1607 and 1596 cm⁻¹).

Table 1S. Concentration of Brønsted and Lewis centers calculated based on IR measurements of pyridine adsorption.

sample	Brønsted centers μmol/g	Lewis centers µmol/g	
HBEA	350	320	
SiBEA	0	10,2	
V _{0.9} SiBEA	36	159	
V _{1.8} SiBEA	37	346	

Figure 3S. IR spectra of CO adsorption on native HAIBEA zeolite sample, dealuminated SiBEA, and vanadium-loaded samples $V_{0.9}$ SiBEA and $V_{1.8}$ SiBEA. *B* – bands due to Broensted centers, *L* – bands due to Lewis centers. Specific bands due to V–CO adducts are designated at 2205, 2196, and 2190 cm⁻¹.

Table 2S. Spin-Hamiltonian parameters of monooxo VO^{2+} and dioxo VO_2 species and oxygen adducts obtained after reaction with N_2O and O_2 molecules in zeolite SiBEA.

species	g _{xx}	g _{уу}	g _{zz}	A xx / mT	 A_{yy} ∕ mT	A zz / mT
VO ²⁺ /SiBEA ^[a]	1.986	1.990	1.931	7.4	8.3	20.5
VO ₂ /SiBEA ^[b]	1.803	1.942	1.968	26.9	32.8	31.8
O ⁻ -VO₂ ⁺ /SiBEA	2.0202	2.0173	2.0284	1.65	1.58	1.49
O2 ⁻ -VO2 ⁺ /SiBEA ^[c]	2.0054	2.0113	2.0239	0.54	0.68	0.98

[a] absolute signs of A tensor taken from previous DFT calculations (ref. 11) are as follows:
[-7.4; -8.3; -20.5] / mT

- [b] absolute signs of A tensor taken from previous DFT calculations (ref. 11) are as follows: [+26.9; +32.8; +31.8] / mT
- [c] EPR spectrum of monoclinic symmetry with non-coincidence angle α = 16° in the *yz* plane, g_{xx} and A_{xx} axes are coincident. Taking into account available literature (e.g. J. Phys. Chem. 1988, 92, 1541) for similar superoxo species (Co(III)–O₂⁻), one assumes that all signs should be negative resulting in the following *A* tensor: [–0.54; –0.68; –0.98].