The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines

P. Batat⁺^a, M. Bayar^b, B. Pur^b, E. Çoker^a, V. Ahsen^b, F. Yuksel⁺^b and A. L. Demirel⁺^a

Supporting Information

Figure S1. MALDI-TOF mass spectrum of compound 3.

Figure S2. MALDI-TOF mass spectrum of compound 4.

Figure S3. The FT-IR spectra of symmetric ZnPc (3)

Figure S4. The FT-IR spectra of asymmetric ZnPc (4)

Compound 3:

FT-IR ν_{max} /cm⁻¹: 3090 (CH_{ar}), 2955-2853 (CH_{al}), 1591, 1486, 1459, 1407, 1378, 1358, 1288, 1128, 1108, 1084, 1066, 943, 870, 778, 741.

Compound 4: FT-IR v_{max}/cm⁻¹: 3073 (CH_{ar}), 2954-2854 (CH_{al}), 1663 (C=N), 1592, 1484, 1455, 1404, 1375, 1336, 1285, 1243, 1136, 1097, 1080, 1060, 972, 943, 883, 872, 788, 740, 725, 697, 688.

Figure S5. ¹HNMR spectrum of compound 4.

Figure S6. ¹³CNMR spectrum of compound 4.

Figure S7. UV-Vis spectra of **4** ($c = 1x10^{-6} M$) in different solvents (THF-tetrahydrofuran, CHCl₃-Chloroform, DMF- Dimethylformamide).

Figure S8. Changes in absorbance of **4** (initially $c = 1x10^{-6}$ M) in non-coordinating solvent CHCl₃ by adding coordinating solvent MeOH (50µl in each step).

Figure S9. Changes in absorbance of **4** (initially $c=1x10^{-6}$ M) in non-coordinating solvent CHCl₃ by adding coordinating solvent pyridine (50µl in each step).

Figure S10. The change in absorbance of asymmetric Pc (4) with concentration in THF.

Figure S11. Photographs of **a**) **3** in THF, $c = 3.32 \times 10^{-6} \text{ M}$ (left cuvette), **3** complexed with Ag (I) (right cuvette), **b**) **4** in THF, $c = 1.12 \times 10^{-6} \text{ M}$ (left cuvette), **4** complexed with Ag (I) (right cuvette).

Figure S12. a) Ag⁺ induced H-aggregation (face to face) of Pcs (Green squares: Pc molecules, black points: Ag⁺ ions), b) Top view of H-aggregates, c) Top view of J-aggregates.

Figure S13. The absorption spectra of symmetric ZnPc (**3**) LB films on glass substrates decomposed to Lorentzian fits representing different aggregates. (left: film deposited from pure water subphase (H-aggregates at 666 nm, monomeric aggregates at 728 nm, J-aggregates at 786 nm); right: film deposited from Ag⁺ containing subphase (H-aggregates at 666 nm, monomeric aggregates at 728 nm, J-aggregates at 728 nm, J-aggregates at 795 nm)).

Figure S14. The absorption spectra of asymmetric ZnPc (4) LB films on glass substrates decomposed to Lorentzian fits representing different aggregates. (left: film deposited from pure water subphase (H-aggregates at 677 nm, monomeric aggregates at 717 nm, J-aggregates at 758 nm); right: film deposited from Ag⁺ containing subphase (H-aggregates at 657 nm, monomeric aggregates at 717 nm, J-aggregates at 814 nm)).