SUPPORTING INFORMATION

Planar vs. three-dimensional X_6^{2} , $X_2Y_4^{2}$, and $X_3Y_3^{2}$ (X, Y = B, Al, Ga) metal clusters. An analysis of the isomerisation energies through the turn-upside-down approach

Ouissam El-Bakouri,^a Miquel Solà,^{*,a} and Jordi Poater^{*,b,c,d}

^a Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia Spain

^b Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain. E-mail: jordi.poater@gmail.com

^c Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boeleaan 1083, NL-1081HV Amsterdam, The Netherlands

^{*d*} Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, 08010 Barcelona, Catalonia, Spain

Table S1. Cartesian coordinates of all systems analysed.

Table S2. Energy decomposition analysis (EDA) of B_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two B_3^- fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

Table S3. Energy decomposition analysis (EDA) of Al₆²⁻ metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two Al₃⁻ fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

Table S4. Energy decomposition analysis (EDA) of Ga_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two Ga_3^{-} fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

Table S5. Energy decomposition analysis (EDA) of B_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two B_3^- fragments at their triplet state, computed at the BLYP-D3(BJ)/TZ2P level.

 Table S1. Cartesian coordinates of all systems analysed.

B ₆ ²⁻ (D _{2h})			B ₆ ²⁻ ((O _h)		
В	-0.890490	-0.830846	0.000000	В	0.000000	0.000000	1.249985
В	0.000000	-2.082890	0.000000	В	0.000000	1.249985	0.000000
В	0.890490	-0.830846	0.000000	В	0.000000	0.000000	-1.249985
В	-0.890490	0.830846	0.000000	В	0.000000	-1.249985	0.000000
В	0.890490	0.830846	0.000000	В	-1.249985	0.000000	0.000000
B	0.000000	2.082890	0.000000	B	1.249985	0.000000	0.000000
2	01000000			2	1.2 17700		
Al ₆ ²⁻ (D_{2h}			Al ₆ ²⁻	(O _h)		
Al	-1.437928	-1.286828	0.000000	Al	0.000000	0.000000	1.941805
Al	0.000000	-3.819606	0.000000	Al	0.000000	1.941805	0.000000
Al	1.437928	-1.286828	0.000000	Al	0.000000	0.000000	-1.941805
Al	-1.437928	1.286828	0.000000	Al	0.000000	-1.941805	0.000000
Al	1.437928	1.286828	0.000000	Al	-1.941805	0.000000	0.000000
Al	0.000000	3.819606	0.000000	Al	1.941805	0.000000	0.000000
Ga_{6}^{2}	(D _{2h})			Ga_{6^2}	-(O _h)		
Ga	-1.415706	-1.263017	0.000000	Ga	0.000000	0.000000	1.950378
Ga	0.000000	-3.791914	0.000000	Ga	0.000000	1.950378	0.000000
Ga	1.415706	-1.263017	0.000000	Ga	0.000000	0.000000	-1.950378
Ga	-1.415706	1.263017	0.000000	Ga	0.000000	-1.950378	0.000000
Ga	1.415706	1.263017	0.000000	Ga	-1.950378	0.000000	0.000000
Ga	0.000000	3.791914	0.000000	Ga	1.950378	0.000000	0.000000
					- (0.)		
B ₂ Al ₄	$\mu^{2-}(D_{2h})$			B_2AI	$_{4^{2-}}(O_{h})$		
AI	-1.377132	-1.351418	0.000000	В	0.000000	1.304474	0.000000
В	0.000000	-2.890830	0.000000	Al	0.000000	0.000000	-1.735715
Al	1.377132	-1.351418	0.000000	В	0.000000	-1.304474	0.000000
Al	-1.377132	1.351418	0.000000	Al	0.000000	0.000000	1.735715
Al	1.377132	1.351418	0.000000	В	-1.304474	0.000000	0.000000
В	0.000000	2.890830	0.000000	В	1.304474	0.000000	0.000000
	2 (D)				2 (0)		
Al ₂ D ₄	$\mu^{2^{-}}(D_{2h})$	0 705 (40	0.00000		$4^{2^{-1}}$ (O_h)	1 002015	0.00000
D	-0.897799	-0.785648	0.000000	AI	0.000000	1.802815	0.000000
AI	0.0000000	-2.763150	0.000000	B	0.000000	0.000000	-1.455322
В	0.897799	-0.785648	0.000000	AI	0.000000	-1.802815	0.000000
В	-0.897799	0.785648	0.000000	B	0.000000	0.000000	1.455322
В	0.897799	0.785648	0.000000	AI	-1.802815	0.000000	0.000000
AI	0.000000	2.763150	0.000000	AI	1.802815	0.000000	0.000000
	2- (D _{et})				2^{2} (0,)		
	14^{-} (D2h) 1 125711	1 256714	0.00000		a_{4}^{-} (O_{h})	1 026152	0 000000
	-1.423/11	-1.230/14	0.000000	Ud 1	0.000000	1.930132	1 050424
		-3./3434/			0.000000		-1.730434
ud Ca	1.423/11	-1.230/14	0.000000	41 1	0.000000	-1.930132	
ud Ca	-1.423/11 1 /25711	1.230/14				0.000000	1.750454
	1.423/11		0.000000	ua Ca	-1.730132	0.000000	
AI	0.000000	3./3454/	0.000000	Ga	1.936152	0.000000	0.000000

Ga ₂ A	$Al_{4^{2-}}(D_{2h})$			Ga ₂ A	$Al_{4^{2-}}(O_{2h})$		
Al	-1.428358	-1.293707	0.000000	Al	0.000000	1.949081	0.000000
Ga	0.000000	-3.835594	0.000000	Ga	0.000000	0.000000	-1.912150
Al	1.428358	-1.293707	0.000000	Al	0.000000	-1.949081	0.000000
Al	-1.428358	1.293707	0.000000	Ga	0.000000	0.000000	1.912150
Al	1.428358	1.293707	0.000000	Al	-1.949081	0.000000	0.000000
Ga	0.000000	3.835594	0.000000	Al	1.949081	0.000000	0.000000
Ga ₂ E	B4 ²⁻ (D _{2h})			Ga ₂ I	B4 ²⁻ (O _h)		
В	-0.891736	-0.787322	0.000000	В	0.000000	1.323781	0.000000
Ga	0.000000	-2.828659	0.000000	Ga	0.000000	0.000000	-1.766260
В	0.891736	-0.787322	0.000000	В	0.000000	-1.323781	0.000000
В	-0.891736	0.787322	0.000000	Ga	0.000000	0.000000	1.766260
В	0.891736	0.787322	0.000000	В	-1.323781	0.000000	0.000000
Ga	0.000000	2.828659	0.000000	В	1.323781	0.000000	0.000000
Al ₃ G	$a_{3^{2-}}(D_{2h})$			Al ₃ G	$a_{3^{2}}(0_{h})$		
Ga	0.000000	-1.431932	1.229977	Al	1.580083	0.000000	1.112352
Ga	0.000000	0.000000	3.727810	Al	-0.790042	1.368392	1.112352
Ga	0.000000	1.431932	1.229977	Ga	-1.600688	0.000000	-1.117676
Al	0.000000	-1.421171	-1.309089	Ga	0.800344	-1.386237	-1.117676
Al	0.000000	1.421171	-1.309089	Al	-0.790042	-1.368392	1.112352
Al	0.000000	0.000000	-3.874624	Ga	0.800344	1.386237	-1.117676

Table S2. Energy decomposition analysis (EDA) of B_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two B_3^- fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

B ₆ ²⁻	D _{2h} +	$O_h + O_h$	ΔE	$O_h + O_h$	ΔΕ	D _{2h} +	ΔΕ
	D _{2h} →D _{2h}	→ 0 _h	D_{2h} - O_h	$\rightarrow D_{2h}$	D_{2h}	$D_{2h} \rightarrow O_h$	O_h
ΔE_{int}	-192.0	-101.4	-90.6	-125.3	66.7	-81.2	20.2
ΔE_{Pauli}	533.5	735.3	-201.8	519.1	-14.4	724.4	-10.9
ΔV_{elstat}	-239.0	-291.9	52.9	-206.1	32.9	-286.2	5.7
ΔE_{oi}	-483.4	-542.8	59.4	-435.6	47.8	-516.6	26.2
ΔE_{disp}	-3.2	-2.1	-1.1	-2.7	0.5	-1.9	0.2
ΔE_{prep}	12.5	1.3	11.2	1.3	-11.2	12.5	11.2
ΔΕ	-179.5	-100.2	-79.3	-124.0	55.5	-68.7	31.5

Table S3. Energy decomposition analysis (EDA) of Al_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two Al_3^{-} fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

Al ₆ ²⁻	$D_{2h} + D_{2h}$	$O_h + O_h$	ΔΕ	$O_h + O_h$	ΔΕ	D _{2h} +	ΔΕ
	→D _{2h}	→ 0 _h	D2h - Oh	$\rightarrow D_{2h}$	D _{2h}	$D_{2h} \rightarrow O_h$	O_h
ΔE_{int}	-20.7	-39.8	19.1	-21.2	-0.5	-32.8	7.0
ΔE_{Pauli}	225.7	348.0	-122.3	230.3	4.6	338.1	-9.9
ΔV_{elstat}	-96.3	-166.5	70.2	-99.5	-3.2	-157.9	8.6
ΔE_{oi}	-146.9	-217.4	70.5	-149.3	-2.4	-213.8	3.6
ΔE_{disp}	-3.2	-3.9	0.7	-2.7	0.5	0.8	4.7
ΔE_{prep}	0.0	1.7	-1.7	1.7	1.7	0.0	-1.7
ΔΕ	-20.7	-38.1	17.4	-19.5	1.2	-32.8	5.3

Table S4. Energy decomposition analysis (EDA) of Ga_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two Ga_3^{-} fragments at their quintuplet state, computed at the BLYP-D3(BJ)/TZ2P level.

Ga ₆ ²⁻	$D_{2h} + D_{2h}$	$O_h + O_h$	ΔΕ	$O_h + O_h$	ΔΕ	D _{2h} +	ΔΕ
	$\rightarrow D_{2h}$	→ 0 _h	D_{2h} - O_h	$\rightarrow D_{2h}$	D_{2h}	$D_{2h} \rightarrow O_h$	O_h
ΔE_{int}	-19.1	-31.0	11.9	-20.3	-1.2	-26.4	4.6
ΔE_{Pauli}	269.6	384.5	-114.9	278.2	8.6	372.8	-11.8
ΔV_{elstat}	-138.0	-207.5	69.5	-144.0	-6.0	-198.2	9.3
ΔE_{oi}	-146.7	-203.4	56.7	-150.6	-3.9	-199.2	4.2
ΔE_{disp}	-4.0	-4.7	0.6	-3.9	0.1	-1.8	2.9
ΔE_{prep}	0.1	1.4	-1.3	1.4	1.3	0.1	-1.3
ΔΕ	-19.0	-29.6	10.6	-18.9	0.1	-26.3	3.3

Table S5. Energy decomposition analysis (EDA) of B_6^{2-} metal cluster with D_{2h} and O_h symmetries (in kcal mol⁻¹), from two B_3^- fragments at their triplet state, computed at the BLYP-D3(BJ)/TZ2P level.

B ₆ ² ·	$D_{2h} + D_{2h}$	$O_h + O_h$	ΔE
	→D _{2h}	→ 0 _h	D_{2h} - O_h
ΔE_{int}	-84.9	-50.5	-34.4
ΔE_{Pauli}	451.8	1169.5	-717.7
ΔV_{elstat}	-180.9	-447.6	266.7
ΔE_{oi}	-352.7	-770.4	417.7
ΔE_{disp}	-3.2	-2.1	-1.1
ΔE_{prep}	0.2	11.8	-11.7
ΔΕ	-84.8	-38.7	-46.1