Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

D- π -A1- π -A2 push pull small molecule donor for solution processed bulk heterojunction organic solar cells

Prabhat Gautam,¹ Rajneesh Misra,^{*1}, S. Biswas², Ganesh D. Sharma^{*2}

¹Department of Chemistry, Indian Institute of Technology, Indore (MP) 452017

²Molecular Electronic and Optoelectronic Device Research Laboratory

Department of Physics

The LNM Institute of Information technology

Jamdoli, Jaipur 302031 (Raj), India

Table of Contents

I. Experimental details S2

II. Copies of ¹H NMR, ¹³C NMR spectra and HRMS of TPA-BTD-NPI......S4

III. Differential pulse Voltammetry of TPA-BTD-NPI ······S6

I. Experimental Section: Chemicals were used as received unless otherwise indicated. All oxygen or moisture sensitive reactions were performed under nitrogen/argon atmosphere. ¹H NMR (400 MHz), and ¹³C NMR (100MHz) spectra were recorded on on the Bruker Avance (III) 400 MHz instrument by using CDCl₃. Chemical shifts for ¹H NMR spectra are reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using residual protonated solvent as an internal standard {CDCl₃, 7.26 ppm}. Chemical shifts for ¹³C NMR spectra are reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using the solvent as internal standard {CDCl₃, 77.0 ppm}. The ¹H NMR splitting patterns have been described as "s, singlet; d, doublet; t, triplet and m, multiplet". Thermogravimetric analyses were performed on the Metler Toledo Thermal Analysis system. UV-visible absorption spectra were recorded on a Carry-100 Bio UV-visible Spectrophotometer. Emission spectra were taken in a fluoromax-4p fluorimeter from HoribaYovin (model: FM-100). The excitation and emission slits were 2/2 nm for the emission measurements. All of the measurements were done at 25°C. The density functional theory (DFT) calculation were carried out at the B3LYP/6-31G** level for C, N, S, H in the Gaussian 09 program. HRMS was recorded on Brucker-Daltonics, micrOTOF-Q II mass spectrometer.

Preparation of TPA-BTD-NPI.

To a stirred solution of the TPA-BTD-Br (1 mmol), 2-butyl-6-ethynyl-1Hbenzo[*de*]isoquinoline-1,3(2H)-dione (1 mmol) in THF, and TEA (1:1, v/v) were added [PdCl₂(PPh₃)₂] (20 mg, 0.028 mmol) and CuI (4 mg, 0.02 mmol) under an argon flow at room temperature. The reaction mixture was stirred for 12 h at 70 °C, and then cooled to room temperature. The solvent was then evaporated under reduced pressure, and the mixture was purified by SiO₂ chromatography with DCM/hexane (2:1, v/v), to obtain **TPA-BTD-NPI**. Red solid (460 mg, Yield: 68%); ¹H NMR (400 MHz, (CDCl₃, δ in ppm): 9.05 (d, J = 8.5 Hz, 1H), 8.68 (d, J = 6.5 Hz, 1H), 8.62 (d, J = 6.8 Hz, 1H), 8.08 (d, J = 6.2 Hz, 1H), 7.95-7.91 (m, 2H), 7.81 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.3 Hz, 2H), 7.33–7.29 (m, 4H), 7.16–7.03 (m, 8H), 4.20 (t, J = 7.8 Hz, 2H), 1.77-1.69 (m, 2H), 1.50-1.41 (m, 2H), 0.98 (t, J = 7.52 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃, δ in ppm): 163.9, 163.7, 154.5, 154.4, 148.9, 146.9, 133.1, 133.0, 132.6, 131.8, 131.7, 131.66, 131.0, 129.5, 128.0, 127.8, 126.8, 125.3, 124.0, 123.0, 122.7, 121.6, 119.0, 115.33, 114.6, 99.5, 94.7, 93.8, 84.9, 40.4, 30.2, 20.4, 13.8 HRMS (ESI-TOF) *m/z* calcd for $C_{44}H_{30}O_2N_4S + H: 679.2162 [M + H]^+$, found 679.2175 [M + H]⁺.

Melting point of TPA-BTD-NPI is 232–233 °C.

Figure S1 ¹H NMR of TPA-BTD-NPI

Figure S3 Full HRMS of TPA-BTD-NPI

Figure S4b. Differential pulse voltammogram of ferrocenyl BTDs **5a**, and **5b** at 0.01 M concentration in 0.1 M Bu_4NPF_6 in dichloromethane recorded at 50 mVs⁻¹ scan speed.