Supporting Information

Electrochemical and in situ X-ray spectroscopic studies of MnO₂/reduced graphene oxide nanocomposites as a supercapacitor

Han-Wei Chang^{a,b}, Ying-Rui Lu^{a,b,c}, Jeng-Lung Chen^b, Chi-Liang Chen^b, Jyh-Fu Lee^b, Jin-Ming Chen^b, Yu-Chen Tsai^{d*}, Ping-Hung Yeh^a, Wu Ching Chou^e, and Chung-Li Dong ^{a*}

^aDepartment of Physics, Tamkang University, New Taipei, 25137, Taiwan
^bNational Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
^cProgram for Science and Technology of Accelerator Light Source, National Chiao Tung University, Hsinchu 30010, Taiwan
^d Department of Chemical Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan
^e Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan Figure S1 presents the pre-edge regions of the Mn K-edge XAS of (a) $MnO_2/C-CNT$, (b) MnO_2/RGO , and (c) MnO_2/RGO -Au electrodes at different stages of cycling. The pre-peak intensity of the MnO_2/C -CNT electrodes visibly changes during the charge process. Additionally, the pre-peak intensity of the MnO_2/RGO -based electrodes exhibits almost no change in 1000 cycles because of very slight change in the tunnel size of MnO_2/RGO -based electrodes, which enables the structure to be maintained throughout the charge/discharge processes and improves the electrochemical capacitive performance."

Figure S1