Electronic Structure Engineering of Various Structural Phases of Phosphorene

Sumandeep Kaur^{1*}, Ashok Kumar^{2*}, Sunita Srivastava^{1*} and K. Tankeshwar^{3*}

¹Department of Physics, Panjab University, Chandigarh 160014, India ²Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India ³Department of physics, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India

(Feb, 2016)

*Email:

SumandeepKaur (dusuman0015@gmail.com)

Ashok Kumar (<u>ashok.1777@yahoo.com</u>)

Sunita Srivastava (sunita@pu.ac.in)

K. Tankeshwar (tkumar@gjust.org)

FIGURE S1. The band structure of the pristine (a) α -P, (b) β -P (rectangular unitcell), (c) β -P (hexagonal unitcell) (d) γ -P and (e) δ -P monolayers along with the density of states showing contribution of 3s, 3p orbitals and the total density of states (TDOS).

FIGURE S2. The electronic band structure of the homo-bilayers of (a) γ -P and (b) δ -P using GGA-PBE functional. The Dirac cone features in δ -P homo-bilayer is highlited with red circle in (b).

FIGURE S3. The side view of charge density difference profile for homo-bilayers of phosphorene allotropes. Isosurface value is taken as $2.6 \times 10^{-4} \text{ e/Å}^3$. Blue and yellow region shows charge depletion and accumulation respectively.

FIGURE S4. The homo-bilayer of AB stacked bilayer of β -P in rectangular unitcell with a= 3.32 Å and b= 5.74 Å with top and side view.

FIGURE S5. The electronic band structure and DOS of bilayer β -phosphoerene in AB-stacked rectangular unit cell.

FIGURE S6. The side view of charge density difference profile for hetero-bilayers of phosphorene allotropes. Isosurface value is taken as $2.4 \times 10^{-4} \text{ e/Å}^3$. Blue and yellow regions show charge depletion and accumulation respectively.

FIGURE S7. Stress-strain curve for β -P bilayer in rectangular unitcell.

FIGURE S8. The electronic band structure of α -P/ β -P at various values of biaxial tensile strain (e).

FIGURE S9. The electronic band structure of α -P/ β -P at various values of normal compression strain (e_z).

FIGURE S10. The variation of fractional change in bandgap with pressure for β -P bilayer in rectangular unitcell.

FIGURE S11. The electronic band structures and isosurfaces of charge accumulation and charge depletion of α -P/ β -P hetero-bilayer at different values of applied electric field.Blue and yellow region shows charge depletion and accumulation respectively.