Supplementary Material for:-

The application of inelastic neutron scattering to investigate the interaction of methyl propanoate with silica

Andrew R McFarlane,^{*a*} Hannah Geller,^a Ian P. Silverwood,^{*a*} Richard I. Cooper,^{*b*} David J. Watkin,^{*b*} Stewart F. Parker,^{*b*} John M. Winfield^{*a*} and David Lennon^{**a*}

- ^a School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
 E-mail: David.Lennon@glasgow.ac.uk
- ^b Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
- ^c ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK.

Table S1: Crystal data, data collection and refinement methods for methyl propanoate.

Crystal data $C_4H_8O_2$ $M_r = 88.11$ Triclinic, $P\bar{1} Z = 4$ a = 5.9523 (5) Å b = 6.7864 (5) Å c = 12.7209 (11) Å $\alpha = 87.987 (3)^{\circ}$ $\beta = 89.585 (3)^{\circ}$ $\gamma = 84.399 (4)^{\circ}$ $V = 511.08 (7) Å^{3}$

Mo K α radiation, λ = 0.71073 Å μ = 0.09 mm⁻¹ T = 150 K 0.80 × 0.10 × 0.10 mm

Data collection1996 independent reflectionsNonius KappaCCD diffractometer1996 independent reflectionsAbsorption correction: Multi-scan1419 reflections with $l > 2.0\sigma(l)$ DENZO/SCALEPACK [9]1419 reflections with $l > 2.0\sigma(l)$ $T_{min} = 0.62, T_{max} = 1.00$ $R_{int} = 0.041$ 6235 measured reflections $R_{int} = 0.041$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.064$ 0 restraints $wR(F^2) = 0.212$ Only H-atom coordinates refinedS = 0.88 $\Delta \rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ 1996 reflections $\Delta \rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$ 157 parameters $\Delta \rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$

Figure S1: Numbering scheme for methyl propanoate.

	Crystal				Gas phase	
	Experimental		Computa	tional		
	X-ray at	150 K	CASTEP		Gaussian 03	
	Cs	<i>C</i> ₁	Cs	<i>C</i> ₁	Cs	
Distance / Å						
C1–C2	1.516	1.492	1.526	1.529	1.523	
C2–C3	1.492	1.497	1.513	1.512	1.511	
C3=01	1.203	1.202	1.219	1.221	1.211	
C3–O2	1.346	1.333	1.357	1.354	1.352	
O2–C4	1.449	1.443	1.449	1.447	1.435	
C1-H1					1.092	
C1-H2					1.091	
C1-H3					1.091	
C2-H4					1.095	
C2-H5					1.095	
C4–H6					1.090	
C4–H7					1.090	
C4–H8					1.087	
Bond angle / º						
C1–C2–C3	112.9	114.4	113.1	113.6	112.4	
C2-C3-01	111.4	111.6	111.4	111.1	110.6	
C2–C3=O2	126.2	125.5	125.8	126.0	125.9	
C3-01-C4	115.2	116.9	115.1	116.5	114.1	
H1C1C2			109.5	110.4	110.6	
H1-C1-H2			108.5	108.1	108.5	
H1-C1-H3			108.6	108.3	108.5	
H2-C1-H3			107.7	108.6	107.5	
H3–C2–H4			105.7	106.2	105.8	
H8-C4-01			105.9	104.7	105.4	
H8–C4–H6			110.8	111.0	110.7	
H8–C4–H7			110.6	110.5	110.7	
H6–C4–H7			109.8	109.9	109.0	
Dihedral angle / º						
C1–C2–C3–O1	179.9	159.7	179.3	154.3	180.0	
C2-C3-01-C4	179.3	179.9	179.1	177.8	180.0	

Table S2: Observed and calculated structural parameters for methyl propanoate. In the crystal the almost planar molecule is called C_s and the skew molecule is called C_1 .

Table S3: Observed and calculated vibrational transition energies for methyl propanoate. In the crystal the almost planar molecule is called C_s and the skew molecule is called C_1 .

Experimental			Calculated			Description			
Infrared			INS	Gaussian 0	3	CASTEP			
Gas	Liquid	Solid	Solid	Gas	Infrared	Solid	Infrared	Character	
					intensity		intensity		
cm⁻¹	cm⁻¹	cm⁻¹	cm⁻¹	cm⁻¹	km mol ⁻¹	cm⁻¹	km mol ⁻¹		
			51			19	0.00	Ag	Translation
						39	0.00	Ag	Translation
			62			41	0.00	Ag	Translation
						44	0.00	Ag	Translation
						50	3.54	A _u	Libration
						55	6.40	A _u	Libration
						59	3.61	A _u	Translation
			81			60	0.00	Ag	Libration
						61	0.00	Ag	Libration
						63	2.94	A _u	Libration
						67	0.00	Ag	Libration
						75	0.86	A _u	Translation
						82	0.00	Ag	Translation
				29	0.00	87	0.56	A _u	C2–C3 torsion
						90	0.00	Ag	C2–C3 torsion
						92	0.00	Ag	C2–C3 torsion
						95	1.38	A _u	C2–C3 torsion
			90			103	0.71	A _u	Translation
						104	0.00	Ag	Translation
						106	1.37	A _u	Libration
			116			108	0.00	A _g	Libration
						112	0.00	Ag	Libration
						113	6.27	A _u	Libration
						124	5.98	A _u	Libration

	136			126	0.00	Ag	Libration
	162	174	1.31	160	2.15	A _u	C_1 C4 methyl torsion
	165			166	0.00	Ag	C ₁ C4 methyl torsion
		147	4.81	179	1.14	A _u	C3–O1 torsion
	193			181	0.00	Ag	C3–O1 torsion
	204			185	0.00	Ag	C _s C4 methyl torsion
				189	69.95	A _u	C3–O1 torsion
				194	0.00	Ag	C3–O1 torsion
	235			213	0.88	A _u	$C_{\rm s}$ C4 methyl torsion
		215	2.01	220	0.00		C1–C2–C3 + C2–C3–O1 in-phase, in-
						Ag	plane bend
				221	23.11		C1–C2–C3 + C2–C3–O1 in-phase, in-
						Au	plane bend
	245			228	0.00		C1–C2–C3 + C2–C3–O1 in-phase, in-
						Ag	plane bend
				230	11.22		C1–C2–C3 + C2–C3–O1 in-phase, in-
						A _u	plane bend
		233	1.88	240	1.53	Au	C _s C1 methyl torsion
	262			242	0.00	Ag	C _s C1 methyl torsion
				242	0.00	Ag	C ₁ C1 methyl torsion
				249	30.07	A _u	C ₁ C1 methyl torsion
	303	343	19.91	317	68.79		C_1 C1–C2–C3 + C3–C1–C4 out-of-phase,
						Au	in-plane bend
				318	0.00		C_1 C1–C2–C3 + C3–C1–C4 out-of-phase,
						Ag	in-plane bend
	339			329	66.67		$C_{\rm s}$ C1–C2–C3 + C3–C1–C4 out-of-phase,
						Au	in-plane bend
				332	0.00		C _s C1–C2–C3 + C3–C1–C4 out-of-phase,
						Ag	in-plane bend
		455	0.73	428	3.52	A _u	C_1 C2–C3–O1 in-plane bend
	442			428	0.00	Ag	C_1 C2–C3–O1 in-plane bend
				438	1.80	A _u	C _s C2–C3–O1 in-plane bend

						438	0.00	Ag	C _s C2–C3–O1 in-plane bend
		575	566	582	2.17	563	13.68	A _u	C=O out-of-plane bend
						564	0.00	Ag	C=O out-of-plane bend
						571	1.71	Au	C=O out-of-plane bend
						571	0.00	Ag	C=O out-of-plane bend
		653	650	670	3.39	640	7.70	A _u	C _s C=O in-plane bend
						640	0.00	Ag	C _s C=O in-plane bend
		671	668			661	11.22	A _u	C_1 C=O in-plane bend
						662	0.00	Ag	C_1 C=O in-plane bend
	807	805	807	824	10.02	788	108.75	Au	Methylene rock
						788	0.00	Ag	Methylene rock
						791	7.87	Au	Methylene rock
						792	0.00	Ag	Methylene rock
847	848	854	855	878	14.79	837	55.68	A _u	C _s C2–C3 + C3–O1 in-phase stretch
						838	0.00	Ag	C _s C2–C3 + C3–O1 in-phase stretch
						839	34.83	Au	C_1 C2–C3 + C3–O1 in-phase stretch
						840	0.00	Ag	C_1 C2–C3 + C3–O1 in-phase stretch
968	963	962	960	1014	3.09	949	26.52	Au	C_1 C1–C2 + O1–C4 out-of-phase stretch
						949	0.00	Ag	C_1 C1–C2 + O1–C4 out-of-phase stretch
						950	25.87	A _u	C _s C1–C2 + O1–C4 out-of-phase stretch
						951	0.00	Ag	C _s C1–C2 + O1–C4 out-of-phase stretch
1026	1022	1020	1020	1056	16.39	1005	0.00	Ag	C _s C1 methyl rock
						1006	62.24	Au	C _s C1 methyl rock
						1011	46.34	Au	C ₁ C1 methyl rock
						1014	0.00	Ag	C ₁ C1 methyl rock
1090	1085	1089	1091	1133	0.19	1066	5.03	A _u	C _s C1 methyl rock
						1068	0.00	Ag	C _s C1 methyl rock
						1071	63.97	A _u	C ₁ C1 methyl rock
						1072	0.00	Ag	C ₁ C1 methyl rock
				1137	9.90	1075	61.88	Au	C _s C1–C2 + O1–C4 in-phase stretch
						1077	0.00	Ag	C_1 C1–C2 + O1–C4 in-phase stretch
						1078	27.42	A _u	C_1 C1–C2 + O1–C4 in-phase stretch

						1079	0.00	Ag	C _s C1–C2 + O1–C4 in-phase stretch
				1205	0.89	1131	1.42	A _u	<i>C</i> ₁ C4 methyl rock
						1133	0.00	Ag	C ₁ C4 methyl rock
			1166			1144	0.00	Ag	C _s C4 methyl rock
						1145	19.50	A _u	C _s C4 methyl rock
		1162		1249	270.53	1151	586.35	A _u	C2–C3 + C3–O1 out-of-phase stretch
						1153	0.00	Ag	C2–C3 + C3–O1 out-of-phase stretch
1175	1174	1175				1156	475.15	A _u	C2–C3 + C3–O1 out-of-phase stretch
						1163	0.00	Ag	C2–C3 + C3–O1 out-of-phase stretch
			1197	1227	101.73	1169	0.00	Ag	C _s C4 Methyl rock
						1171	294.22	A _u	C _s C4 Methyl rock
1200	1199	1198				1173	306.76	A _u	C ₁ C4 Methyl rock
						1179	0.00	Ag	C ₁ C4 Methyl rock
						1237	2.72	A _u	C _s Methylene twist
			1258	1308	0.02	1240	0.00	Ag	C _s Methylene twist
1285	1276	1261				1242	13.46	A _u	C ₁ Methylene twist
						1243	0.00	Ag	C ₁ Methylene twist
			1330	1415	96.41	1324	0.00	Ag	C _s Methylene wag
1357	1356	1357				1325	135.94	A _u	C _s Methylene wag
						1329	146.84	A _u	C_1 Methylene wag
						1331	0.00	Ag	C_1 Methylene wag
			1373	1457	4.67	1356	0.00	Ag	C _s C1 Methyl sym def
		1383				1360	56.18	A _u	C _s C1 Methyl sym def
						1366	55.80	Au	C ₁ C1 Methyl sym def
						1366	0.00	Ag	C ₁ C1 Methyl sym def
		1417		1504	13.00	1393	124.53	A _u	C _s Methylene scissors
						1393	0.00	Ag	C _s Methylene scissors
						1404	0.00	Ag	C ₁ Methylene scissors
1442	1436	1434				1405	69.29	Au	C ₁ Methylene scissors
			1423	1512	12.53	1410	57.82	A _u	C ₁ C4 Methyl sym def
						1410	0.00	Ag	C ₁ C4 Methyl sym def
		1444				1420	72.37	A _u	C _s C4 Methyl sym def

						1424	0.00	Ag	C _s C4 Methyl sym def
						1434	0.00	Ag	C ₁ C4 Methyl asym def
1467	1463	1456		1529	9.00	1435	50.02	A _u	C4 Methyl asym def
						1436	12.16	A _u	C _s C4 Methyl asym def
				1536	9.55	1439	0.00	Ag	C _s C1 Methyl asym def
						1440	0.00	Ag	C1 Methyl asym def
			1456	1540	17.70	1441	47.80	A _u	C_1 C4 Methyl asym def
						1443	0.00	Ag	C ₁ C4 Methyl asym def
						1445	8.65	A _u	Methyl asym def
		1469		1544	8.53	1447	51.86	A _u	C _s C4 Methyl asym def
						1450	26.88	A _u	Methyl asym def
						1450	0.00	Ag	Methyl asym def
						1452	0.00	Ag	Methyl asym def
				1540	17.70	1453	0.00	Ag	C _s C4 Methyl asym def
						1456	11.65	A _u	C _s C1 Methyl asym def
						1461	30.01	A _u	C ₁ C1 Methyl asym def
						1464	0.00	Ag	C_1 C1 Methyl asym def
1764	1737	1728		1819	172.87	1691	865.03	A _u	C ₁ C=O stretch
						1694	0.00	Ag	C ₁ C=O stretch
						1703	740.61	A _u	C _s C=O stretch
						1710	0.00	Ag	C _s C=O stretch

Figure S2: Temperature programmed desorption of methyl propanoate on silica.