Single-particle to single-particle transformation of an active type organic μ -tubular homo-structure photonic resonator into a passive type hetero-structure resonator

Uppari Venkataramudu^a, Dasari Venkatakrishnarao,^a Naisa Chandrasekhar,^a Mahamad Ahamad Mohiddon,^b and Rajadurai Chandrasekar^{*}

^a Functional Molecular Nano-/Micro-Solids Laboratory, School of Chemistry University of Hyderabad, Prof. C. R. Rao Road, Hyderabad – 500046 (INDIA)
^bCentre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad – 500046 (INDIA)

E.mail: R.chandrasekar@uohyd.ac.in

Electronic Supporting Information

Fig. S2: a) Normalized FL intensity of thin film of compound **1** and self-assembled microtube, b) Comparative WGM peak intensity from microtube and spontaneous solid state emission from thin film.

Fig. S3. Polarization resolved active type single particle FL spectra of a tube supporting WGM resonance (λ_{ex} = 355 nm).

Phys. Chem. Chem. Phys. 2016, S3

Fig. S4. Controlling the length of the tube by laser (488 nm) burn.

Fig. S5. Selected area Raman spectra of a tube with lumps.

Phys. Chem. Chem. Phys. 2016, S4

Fig. S6. A tube burned at the both ends displaying a yellow-orange FL spectrum supporting WGM modes

Phys. Chem. Chem. Phys. 2016, S5