Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

D.S. Hall, S. Glazier, J.R. Dahn

Supplementary Material:

Isothermal Microcalorimetry as a Tool to Study Solid-Electrolyte Interphase Formation in Lithium-Ion Cells

David S. Hall,^a Stephen L. Glazier,^a J.R. Dahn^{a*}

^aDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax NS, Canada, B3H 4R2 *Email: jeff.dahn@dal.ca

Reaction Scheme and Energies

Table S1 lists the enthalpy changes for the 18 reactions summarized in Figure S1 and originally presented in Table 5 of Self *et al.*¹ These values were evaluated from the enthalpies of each individual species, as calculated by DFT using B3LYP/6-311++G(d,p)/IEFPCM-UFF (ε = 20). Figure S2 graphically compares the changes in enthalpy and free energies. It is noted that the original report by Self *et al.* included the electronic energy and the free energy for each structure but not the enthalpy. Therefore, these values were obtained from the authors and are included here in Table S2. The new open-ring structure of LiO₃SCHCHCH₂ (LiPES) was calculated using the same method as described above. The calculated energies and molecular geometry are reported.

Table S1 The enthalpy changes for the reactions of Li₂PES with PES, EC, EMC. The reaction groups correspond to the four categories discussed in the main article text and as indicated on Figure 5. The reaction numbers correspond to Figure S1.

Reaction		$\Delta H (eV)$
No.	Group	
(1)	(iii)	-2.357
(2)	(iii)	-2.333
(3)	(iii)	-2.214
(4)	(iii)	-2.575
(5)	(iii)	-2.298
(6)	(iii)	-2.221
(7)	(i)	-3.665
(8)	(i)	-3.629
(9)	(iv)	-0.550
(10)	(iv)	-0.636
(11)	(ii)	-1.976
(12)	(ii)	-1.857
(13)	(ii)	-1.858
(14)	(ii)	-1.684
(15)	(iv)	-0.046
(16)	(iv)	-0.185
(17)	(iv)	-0.051
(18)	(iv)	-0.195

Figure S2 The changes in enthalpy and free energy for the 18 reactions in Figure S1.

 $al.^1$

Species	H (Ha)		
PES-Ms4c1a	-1496.433145		
PES-Ms4c1b	-1496.432265		
PES-Ms4c2a	-1496.42789		
PES-Ms4c2b	-1496.441134		
PES-Ms4c3a	-1496.430973		
PES-Ms4c3b	-1496.428143		
EC-MS4c1a	-1098.373398		
EC-MS4c1b	-1098.372064		
EC-MS4c2a	-1098.258929		
EC-MS4c2b	-1098.26206		
EMC-MS4c 1a	-788.108665		
EMC-MS4c 1b	-788.104304		
EMC-MS4c 2a	-827.403958		
EMC-MS4c 2b	-827.397563		
EMC-MS4c 3a	-976.702414		
EMC-MS4c 3b	-976.707541		
EMC-MS4c 4a	-1016.002649		
EMC-MS4c 4b	-1016.007953		
MS4c (Li ₂ PES)	-755.802791		
PES	-740.543723		
EC	-342.435913		
EMC	-382.922145		
LiOMe	-122.724146		
LiOEt	-162.024197		
LiO ₂ COMe	-311.389251		
LiO₂COEt	-350.688889		

Table S2 The enthalpy of the species involved in the reactions in Figure S1, as obtained fromSelf *et al.* The species are identified by the naming convention in the original article.¹

DFT Calculations – LiPES open ring structure

E = -748.25783616 Ha H = -748.176763 Ha G = -748.220635 Ha

Row	Sym	Х	Y	Z
1	С	0.7270800	-1.0277150	-0.2574850
2	С	2.0673960	-0.7456580	-0.0202540
3	С	2.6334910	0.4678260	0.3115000
4	S	-0.6125330	0.1348600	-0.1326210
5	Ο	-1.8088270	-0.5768620	-0.7048830
6	Ο	-0.8913240	0.3461710	1.3342970
7	0	-0.2302710	1.3687120	-0.8469710
8	Η	0.3895720	-2.0287980	-0.4920000
9	Η	2.7331940	-1.6011110	-0.1080830
10	Н	3.6996950	0.5413050	0.4826410
11	Н	2.0432060	1.3702360	0.4021670
12	Li	-2.7298550	-0.5700950	1.1250330

References

J. Self, D. S. Hall, L. Madec, and J. R. Dahn, J. Power Sources, 298, 369–378 (2015).