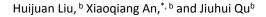
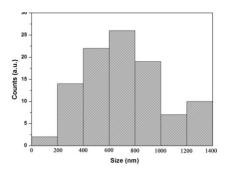
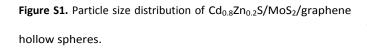
Journal Name




ARTICLE


Supporting Information

Biomolecule-assisted Synthesis of Defect-Mediated Cd₁₋ _xZn_xS/MoS₂/Graphene Hollow Spheres for Highly Efficient Hydrogen Evolution

Ruifeng Du, a Yihe Zhang, *, a Baoying Li, a Xuelian Yu, *, a

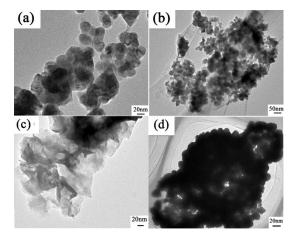
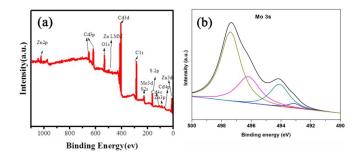
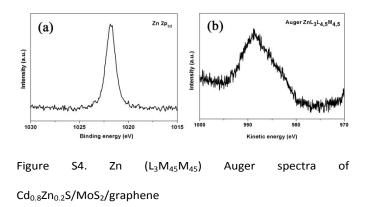




Figure S2. TEM images of (a) blank $Cd_{0.8}Zn_{0.2}S$; (b) $Cd_{0.8}Zn_{0.2}S$ /graphene; and (c) MoS_2 /graphene composites. (d) $CulnS_2$ / MoS_2 /graphene hollow spheres.

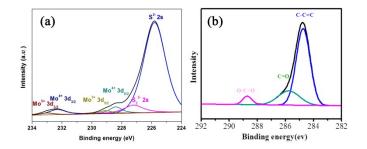


Figure S3. Full XPS spectrum (a) and Mo 3s spectrum (b) of Cd_{0.8}Zn_{0.2}S/MoS₂/graphene hollow spheres.

Figure S4 shows the high-resolution XPS spectrum and Auger spectrum of $ZnL_3L_{4,5}M_{4,5}$ in $Cd_{0.8}Zn_{0.2}S/MoS_2/graphene$ hollow spheres. The binding energy of Zn $2p_{3/2}$ and kinetics energy of Auger transition are located at 1022.1 eV and 989 eV, respectively. The Auger parameter, defined as the difference in kinetic energy between an Auger line and a core-level line, is determined to be 2011.1 eV. This value is different from that of metallic Zinc (2013.8 eV), confirming the formation of zincbased sulfides in the solid solutions.

COMMUNICATION

Figure S5. (a) S 2s spectrum and C 1s spectrum (b) of Cd_{0.8}Zn_{0.2}S/MoS₂/graphene hollow spheres.

To further determine the chemical structures, Raman spectroscopy of Cd_{0.8}Zn_{0.2}S/MoS₂/graphene was studied in Figure S5. The longitudinal optical (LO) phonon peaks of sulfide are seen at about 304 cm⁻¹, 608 cm⁻¹ (second order) and 924 cm⁻¹ (third order) for the Cd_{0.8}Zn_{0.2}S. The peak at 1338 cm⁻¹ (D band) is associated with vibrations of carbon atoms with dangling bonds in plane terminations of disordered graphite. The peak at 1588 cm⁻¹ (G band) corresponds to the vibration of sp2-bonded carbon atoms in a hexagonal lattce. The small peak intensity ratio of I(D)/I(G) indicates the presence of graphene with restored structures in the composites.

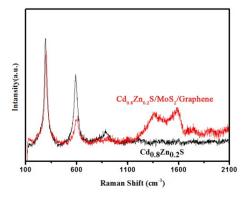


Figure S6. Raman spectra of $Cd_{0.8}Zn_{0.2}S$ nanoparticles and $Cd_{0.8}Zn_{0.2}S/MoS_2/graphene hollow spheres.$

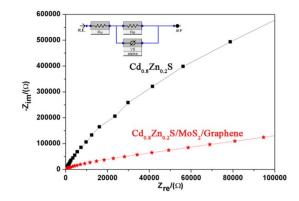


Figure S7. Electrochemical impedance spectra (EIS) of $Cd_{0.8}Zn_{0.2}S$ nanoparticles and $Cd_{0.8}Zn_{0.2}S/MoS_2/graphene$ hollow spheres. Inset is the equivalent circuit.