Electronic Supplementary Information

Prediction of Neutral Noble Gas Insertion Compounds with Heavier Pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi)

Ayan Ghosh, Debashree Manna, and Tapan K. Ghanty

List of Tables:

Table S1. Optimized Structural Parameters (Bond Length, R In Å, Bond Angle, θ in Degree) for Minima (Min) of ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds by B3LYP, MP2, CCSD(T) and MRCI Based Methods with B1, B2, and B3 Basis sets.

Table S2. Optimized Structural Parameters (Bond Length, R In Å, Bond Angle, θ in Degree) for Transition States (TS) of ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds by B3LYP, MP2, CCSD(T) and MRCI Based Methods with B1, B2, and B3 Basis sets.

Table S3. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP, MP2 and CCSD(T) Based Methods Using B1 and B2 Basis sets for 3 FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds. Corresponding IR Intensity Values are Given within the Parentheses (in km mol⁻¹).

Table S4. B3LYP and MP2 Calculated Values of the Harmonic Vibrational Frequencies (in cm⁻¹) and Intrinsic Force Constants in the Parentheses (in N m⁻¹) Corresponding to Individual Internal Coordinates in the ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Using B1 and B2 Basis sets.

Table S5. Energies (in kJ mol⁻¹) of the Various Dissociated Species Relative to the ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Calculated Using B3LYP, MP2, CCSD(T) and MRCI Based Methods Using B1, B2, B3 and B4^a Basis sets.

Table S6. B3LYP and MP2 Calculated Values of the Mulliken Atomic Charges (in au) in 3 FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Using B1 and B2 Basis sets.

Table S7. MP2 (B3LYP) Calculated Values (in au) of the BCP Properties of the F–Ng and Ng– Y Bonds in ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds with B1 Basis Sets for FNgAs and FNgSb Molecules and B2 Basis Sets for FNgBi Molecules.

Table S8. Various Topological Properties at the Local Energy Density Critical Points [(3,+1) HCP] for the FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Ions Calculated Using the B3LYP and MP2 Methods with B1 Basis Sets for FNgAs and FNgSb Molecules and B2 Basis Sets for FNgBi Molecules.

Table S1. Optimized Structural Parameters (Bond Length, R In Å, Bond Angle, θ in Degree) for Minima (Min) of ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds by B3LYP, MP2, CCSD(T) and MRCI Based Methods with B1, B2, and B3 Basis sets.

Bond	Methods	FKrAs	FKrSb	FKrBi	FXeAs	FXeSb	FXeBi
R(F-Ng)	B3LYP/B1	2.144	2.184	a 	2.198	2.227	^a
	B3LYP/B2	2.150	2.196	2.220	2.197	2.229	2.244
	MP2/B1	2.078	2.117	a 	2.152	2.176	^a
	MP2/B2	2.085	2.130	2.158	2.158	2.186	2.212
	CCSD(T)/B1	2.119	2.152	2.177	2.165	2.190	2.217
	CCSD(T)/B3	2.132	2.162	2.181	2.193	2.218	2.229
	MRCI/B3	2.054	2.094	2.113	2.165	2.180	2.192
R(Ng-Y)	B3LYP/B1	2.545	2.749	a 	2.701	2.907	^a
	B3LYP/B2	2.550	2.755	2.839	2.698	2.907	2.978
	MP2/B1	2.490	2.683	a 	2.656	2.859	^a
	MP2/B2	2.489	2.683	2.766	2.650	2.857	2.939
	CCSD(T)/B1	2.597	2.788	2.882	2.698	2.903	2.994
	CCSD(T)/B3	2.627	2.768	2.860	2.752	2.922	3.001
	MRCI/B3	2.563	2.680	2.741	2.772	2.945	3.021
θ(F-Ng-Y)	B3LYP/B1	180.0	180.0	a 	180.0	180.0	a
	B3LYP/B2	180.0	180.0	180.0	180.0	180.0	180.0
	MP2/B1	180.0	180.0	a 	180.0	180.0	^a
	MP2/B2	180.0	180.0	180.0	180.0	180.0	180.0
	CCSD(T)/B1	180.0	180.0	180.0	180.0	180.0	180.0
	CCSD(T)/B3	180.0	180.0	180.0	180.0	180.0	180.0
	MRCI/B3	180.0	180.0	180.0	180.0	180.0	180.0

^aCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the g angular momentum.

Table S2. Optimized Structural Parameters (Bond Length, R In Å, Bond Angle, θ in Degree) for Transition States (TS) of ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds by B3LYP, MP2, CCSD(T) and MRCI Based Methods with B1, B2, and B3 Basis sets.

Bond	Methods	FKrAs	FKrSb	FKrBi	FXeAs	FXeSb	FXeBi
R(F-Rg)	B3LYP/B1	2.448	2.459	a 	2.442	2.477	a
	B3LYP/B2	2.464	2.478	2.485	2.450	2.477	2.494
	MP2/B1	2.358	2.378	^a	2.403	2.432	a
	MP2/B2	2.372	2.397	2.414	2.421	2.453	2.473
	CCSD(T)/B1	2.359	2.383	2.402	2.396	2.428	2.449
	CCSD(T)/B3	2.374	2.390	2.405	2.429	2.452	2.467
	MRCI/B3	2.377	2.391	2.400	2.442	2.462	2.476
R(Ng-Y)	B3LYP/B1	2.486	2.700	^a	2.598	2.819	^a
	B3LYP/B2	2.490	2.706	2.797	2.596	2.813	2.904
	MP2/B1	2.394	2.612	^a	2.552	2.768	^a
	MP2/B2	2.398	2.617	2.716	2.545	2.768	2.865
	CCSD(T)/B1	2.416	2.636	2.747	2.563	2.781	2.880
	CCSD(T)/B3	2.462	2.654	2.742	2.618	2.808	2.894
	MRCI/B3	2.454	2.645	2.721	2.623	2.813	2.893
θ(F-Ng-Y)	B3LYP/B1	100.8	104.8	^a	94.4	96.9	a
	B3LYP/B2	100.9	105.2	107.6	94.0	97.1	98.4
	MP2/B1	107.5	111.6	^a	101.0	103.5	a
	MP2/B2	108.1	112.2	114.9	101.3	103.7	105.3
	CCSD(T)/B1	103.8	107.5	109.0	99.4	101.5	102.7
	CCSD(T)/B3	105.4	109.0	110.0	101.3	103.2	103.6
	MRCI/B3	108.5	112.5	115.4	102.3	104.5	105.7

^aCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the g angular momentum.

Table S3. Harmonic Vibrational Frequencies (in cm⁻¹) Calculated Using B3LYP, MP2 and CCSD(T) Based Methods Using B1 and B2 Basis sets for 3 FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds. Corresponding IR Intensity Values are Given within the Parentheses (in km mol⁻¹).

Species	State	Normal	B3LYP/B1	B3LYP/B2	MP2/B1	MP2/B2	CCSD(T)
		Modes	250 2 (100 2)			100.0 (100.7)	/B1
		F-Ng Str.	378.2 (199.2)	374.8 (196.2)	417.5 (425.9)	408.9 (428.7)	398.3
	Min	Ng-Y Str.	185.1 (4.9)	183.1 (4.7)	207.2 (2.0)	207.9 (1.8)	134.7
FKrAs		F-Ng-Y Bend ^a	101.5 (8.1)	105.8 (8.3)	119.2 (9.0)	121.6 (9.4)	106.7
1 11/15		F-Ng Str.	247.8 (20.7)	243.0 (19.4)	316.7 (95.3)	312.2 (88.1)	311.6
	TS	Ng-Y Str.	177.2 (2.1)	172.9 (1.8)	241.3 (84.4)	239.5 (91.6)	230.4
		F-Ng-Y Bend	-89.6 (6.4)	-87.4 (5.8)	-115.0 (10.4)	-114.3 (10.6)	-126.6
Miı FKrSb TS		F-Ng Str.	354.7 (198.6)	349.5 (193.5)	384.8 (513.6)	372.8 (521.7)	376.7
	Min	Ng-Y Str.	151.6 (5.6)	148.9 (5.3)	175.9 (0.01)	174.3 (0.005)	118.9
		F-Ng-Y Bend ^a	87.0 (8.6)	91.1 (8.6)	103.3 (10.0)	103.8 (10.2)	94.6
		F-Ng Str.	236.3 (17.4)	229.5 ()	299.6 (122.2)	292.2 (118.4)	296.4
	TS	Ng-Y Str.	148.3 (1.7)	143.9 ()	196.7 (57.5)	192.3 (58.4)	185.8
		F-Ng-Y Bend	-86.3 (10.7)	-79.6 ()	-102.3 (11.1)	-101.0 (11.4)	-112.8
		F-Ng Str.	b 	337.1 (187.0)	b 	355.4 (565.3)	364.8
	Min	Ng-Y Str.	b 	130.8 (4.7)	b 	156.9 (0.7)	108.4
FKrBi		F-Ng-Y Bend ^a	b 	84.6 (8.7)	b 	94.7 (10.5)	87.7
		F-Ng Str.	b 	221.2 (13.1)	b 	282.3 (129.0)	285.0
	TS	Ng-Y Str.	b 	128.2 (0.6)	b 	168.1 (45.9)	162.0
		F-Ng-Y Bend	b 	-78.4 (12.9)	b 	-92.3 (12.4)	-106.3
		F-Ng Str.	380.3 (222.3)	377.2 (220.4)	424.4 (320.1)	410.9 (318.1)	407.2
	Min	Ng-Y Str.	173.4 (1.1)	174.0 (1.2)	197.2 (0.03)	197.6 (0.01)	173.8
FXeAs		F-Ng-Y Bend ^a	95.7 (8.3)	105.6 (8.5)	110.7 (9.0)	111.5 (9.5)	105.1
1110115		F-Ng Str.	261.4 (53.8)	256.3 (45.1)	303.9 (151.0)	298.7 (137.9)	304.1
	TS	Ng-Y Str.	197.7 (8.6)	195.6 (7.4)	225.7 (55.8)	228.1 (59.9)	221.9
		F-Ng-Y Bend	-85.8 (4.2)	-90.9 (4.0)	-111.2 (8.3)	-109.7 (9.0)	-118.2

		F-Ng Str.	360.4 (232.1)	355.9 (228.7)	404.6 (380.8)	389.3 (382.3)	407.2
	Min	Ng-Y Str.	138.8 (1.5)	138.0 (1.5)	160.7 (0.1)	159.8 (0.1)	173.8
FXeSb		F-Ng-Y Bend ^a	84.1 (8.5)	94.5 (8.4)	99.6 (9.3)	99.5 (9.5)	105.1
11000		F-Ng Str.	248.7 (49.0)	252.5 (53.6)	290.8 (160.6)	283.7 (153.6)	304.1
	TS	Ng-Y Str.	153.6 (4.2)	154.9 (5.0)	181.1 (36.3)	178.9 (36.8)	221.9
		F-Ng-Y Bend	-85.7 (5.3)	-85.1 (6.0)	-101.5 (8.9)	-100.5 (9.4)	-118.2
		F-Ng Str.	b 	350.3 (252.2)	b 	474.2 (588.9)	465.1
	Min	Ng-Y Str.	b 	124.4 (2.1)	b 	138.4 (0.02)	122.8
FXeBi		F-Ng-Y Bend ^a	b	89.8 (8.7)	b 	92.1 (9.4)	87.1
111001		F-Ng Str.	b	243.1 (53.7)	b 	275.1 (158.7)	285.3
	TS	Ng-Y Str.	b 	131.8 (3.0)	b 	150.8 (25.7)	150.6
		F-Ng-Y Bend	^b	-80.6 (7.2)	b 	-94.5 (10.0)	-99.6

^aIt is doubly degenerate mode for minima energy structure

^bCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the g angular momentum.

Table S4. B3LYP and MP2 Calculated Values of the Harmonic Vibrational Frequencies (in cm⁻¹) and Intrinsic Force Constants in the Parentheses (in N m⁻¹) Corresponding to Individual Internal Coordinates in the ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Using B1 and B2 Basis sets.

Internal Coordinates	Methods	FKrAs	FKrSb	FKrBi	FXeAs	FXeSb	FXeBi
		368.3	345.9	^b	376.8	357.1	^b
	B3LYP/B1	(123.8)	(109.1)		(138.9)	(124.7)	
	D21 VD/D2	364.8	340.6	328.7	373.7	352.5	347.6
F-Ng stretch	BSLYP/B2	(121.4)	(105.9)	(98.6)	(136.7)	(121.6)	(118.2)
r-ng stretten	MD9/D1	415.3	382.4	b 	423.4	403.7	b
	NIP2/BI	(157.4)	(133.4)		(175.5)	(159.4)	
	MP2/B2	406.6	370.3	352.3	409.8	388.4	474.9
		(150.9)	(125.2)	(113.3)	(164.3)	(147.6)	(220.6)
	B3LYP/B1	203.9	170.6	b 	180.8	147.2	b
		(97.0)	(85.0)		(92.0)	(80.5)	
	B3LYP/B2	202.3	168.1	150.7	181.4	146.4	131.7
Ng-V stretch		(95.4)	(82.5)	(80.0)	(92.6)	(79.7)	(82.7)
itg-i succei	MD2/D1	211.6	181.1	^b	199.3	163.0	^b
	WII 2/ D1	(104.5)	(95.8)		(111.8)	(98.7)	
	MD2/D2	212.4	179.4	163.6	200.0	162.0	135.8
	WII 2/ D2	(105.2)	(93.9)	(94.5)	(112.6)	(97.6)	(88.0)
	B3LYP/B1	101.5	87.0	^b	95.7	84.1	^b
F-Ng-V hend ^a	B3LYP/B2	105.8	91.1	84.6	105.6	94.5	89.8
F-Ing-Y bend	MP2/B1	119.2	103.2	^b	110.7	99.6	^b
	MP2/B2	121.6	103.8	94.7	111.5	99.5	92.1

^aIt is doubly degenerate mode for minima energy structure

^bCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the g angular momentum.

Table S5. Energies (in kJ mol⁻¹) of the Various Dissociated Species Relative to the ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Calculated Using B3LYP, MP2, CCSD(T) and MRCI Based Methods Using B1, B2, B3 and B4^a Basis sets.

Channels	Channels No.	Methods	FKrAs	FKrSb	FKrBi	FXeAs	FXeSb	FXeBi
³ FNgY		All	0.0	0.0	0.0	0.0	0.0	0.0
		B3LYP/B1	-378.7	-363.0	^b	-301.7	-293.8	^b
		B3LYP/B2	-389.8	-371.7	-343.9	-306.9	-297.9	-278.2
		MP2/B1	-413.7	-393.8	^b	-324.2	-311.0	^b
$Ng + {}^{3}FY$	(1)	MP2/B2	-429.1	-401.7	-266.9	-338.0	-317.4	-186.9
		CCSD(T)/B1	-403.3	-377.5	-184.9	-319.4	-300.6	-112.3
		CCSD(T)/B3	-441.7	-423.1	-376.9	-367.6	-352.7	-308.7
		CCSD(T)/B4	-406.7	-380.4	-190.6	-320.8	-301.7	-116.4
		B3LYP/B1	169.0	158.4	^b	217.9	199.5	^b
		B3LYP/B2	168.8	153.3	73.8	223.5	198.9	111.2
		MP2/B1	190.3	178.5	^b	279.5	260.9	^b
2 FNg + 2 Y	(2)	MP2/B2	179.5	165.1	164.9	285.8	264.5	260.0
		CCSD(T)/B1	137.8	126.9	126.7	216.0	198.2	193.6
		CCSD(T)/B3			151.8			212.4
		CCSD(T)/B4	142.6	131.7	131.2	222.7	204.7	199.8
		B3LYP/B1	20.3	29.1	^b	69.3	70.2	^b
		B3LYP/B2	14.7	24.0	30.6	69.3	69.6	68.0
		MP2/B1	-4.9	5.0	^b	84.3	87.5	^b
2 FNg + 4 Y	(3)	MP2/B2	-19.8	-10.4	-5.2	86.4	89.0	89.9
		CCSD(T)/B1	-14.1	-4.6	1.2	64.2	66.6	68.1
		CCSD(T)/B3	-12.7	4.2	0.02	53.9	67.1	60.6
		CCSD(T)/B4	-6.3	2.9	8.1	73.9	76.0	76.6
$^{2}\mathbf{E} \perp ^{2}\mathbf{N} = \mathbf{V}$		B3LYP/B1	172.2	167.2	^b	235.2	227.0	^b
I'' INGI	(4)	B3LYP/B2	164.5	159.1	159.5	232.8	223.5	217.2

		MP2/B1	173.9	166.9	^b	249.3	240.1	^b
		MP2/B2	164.6	155.1	155.6	242.6	230.6	227.2
		CCSD(T)/B1	137.4	126.8	126.9	214.0	200.9	197.5
		CCSD(T)/B3	162.4	164.3	152.0	235.6	233.2	219.4
		CCSD(T)/B4	141.2	130.7	130.3	217.5	204.3	200.7
		B3LYP/B1	548.4	505.9	^b	585.2	545.0	^b
		B3LYP/B2	547.1	500.4	479.4	587.5	543.2	518.1
		MP2/B1	524.5	474.5	^b	569.0	523.5	^b
$F^{-} + {}^{3}[NgY]^{+}$	(5)	MP2/B2	513.5	465.7	437.3	570.5	521.7	493.8
		CCSD(T)/B1	540.0	491.1	464.2	582.9	538.7	512.1
		CCSD(T)/B3	518.2	475.8	458.5	556.6	517.9	499.7
		CCSD(T)/B4	541.0	492.0	464.3	586.2	541.4	514.0
		B3LYP/B1	668.6	608.6	^b	703.1	646.4	^b
		B3LYP/B2	679.5	616.6	589.9	715.4	656.5	626.4
		MP2/B1	668.3	602.2	^b	713.8	654.0	^b
$F^{-} + {}^{1}[NgY]^{+}$	(6)	MP2/B2	663.1	594.7	563.2	709.8	647.9	617.5
		CCSD(T)/B1	652.1	586.5	554.6	582.9	634.4	603.1
		CCSD(T)/B3	651.6	593.4	568.4	690.5	636.5	609.6
		CCSD(T)/B4	651.1	585.7	553.5	695.6	635.3	603.6
		B3LYP/B1	185.2	174.6	^b	262.2	243.7	b
		B3LYP/B2	183.4	167.9	88.4	266.3	241.7	154.1
		MP2/B1	191.6	179.8	^b	281.1	262.5	^b
$^{2}\mathbf{F} + \mathbf{Ng} + ^{2}\mathbf{Y}$	(7)	MP2/B2	180.8	166.4	166.2	271.9	250.6	246.1
		CCSD(T)/B1	139.5	128.6	128.4	223.4	205.5	201.0
		CCSD(T)/B3			152.4			220.5
		CCSD(T)/B4	144.4	133.6	133.1	230.3	212.3	207.3
		B3LYP/B1	36.5	45.3	^b	113.5	114.5	^b
${}^{2}\mathbf{F} + \mathbf{N}\mathbf{\sigma} + {}^{4}\mathbf{V}$	(8)	B3LYP/B2	29.3	38.6	45.2	112.2	112.4	110.9
I''''&' I		MP2/B1	-3.6	6.3	b 	85.9	89.1	^b
		MP2/B2	-18.5	-9.2	-3.9	72.5	75.1	76.0

	CCSD(T)/B1	-12.4	-2.9	2.9	71.5	73.9	75.4
	CCSD(T)/B3	-12.1	4.8	0.6	62.0	75.2	68.8
	CCSD(T)/B4	-4.4	4.8	9.9	81.4	83.5	84.1
	B3LYP/B1	72.3	59.0	^b	102.7	85.4	^b
	B3LYP/B2	70.1	56.1	50.2	99.3	89.2	78.4
	MP2/B1	83.7	60.7	^b	107.7	93.8	^b
³ FNøV [TS]	MP2/B2	77.0	53.0	47.8	113.2	92.1	81.3
	CCSD(T)/B1	90.4	68.9	59.8	113.5	95.8	86.7
	CCSD(T)/B3	83.8	62.6	57.1	108.2	90.6	83.5
	CCSD(T)/B4	88.7	67.2	58.0	113.3	95.3	85.8
	MRCI/B3	78.8	55.1	48.9	112.6	91.9	82.9

^aaug–cc–pVQZ–PP (B4) Basis sets calculations are the single point energy calculations based on the optimized minima and transitions state structures as obtained by aug–cc–pVTZ–PP (B1)

^bCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the g angular momentum.

Species	Methods	<i>q</i> ((F)	q	(Ng)	<i>q</i> (Y)
		Minima	TS	Minima	TS	Minima	TS
	B3LYP/B1	-0.645	-0.621	0.354	0.230	0.291	0.391
FIZ- A -	B3LYP/B2	-0.645	-0.600	0.479	0.313	0.166	0.287
rKrAs	MP2/B1	-0.668	-0.874	0.448	0.331	0.220	0.543
	MP2/B2	-0.660	-0.863	0.606	0.432	0.054	0.431
	B3LYP/B1	-0.654	-0.651	0.252	0.135	0.402	0.516
FKrSb	B3LYP/B2	-0.672	-0.633	0.395	0.273	0.277	0.360
	MP2/B1	-0.698	-0.881	0.313	0.178	0.385	0.703
	MP2/B2	-0.709	-0.878	0.509	0.362	0.200	0.517
	B3LYP/B1	^a	^a	^a	^a	^a	^a
FKrBi	B3LYP/B2	-0.677	-0.644	0.353	0.234	0.324	0.410
	MP2/B1	^a	^a	^a	^a	^a	^a
	MP2/B2	-0.727	-0.884	0.437	0.303	0.290	0.581
	B3LYP/B1	-0.673	-0.686	0.626	0.483	0.047	0.203
EVala	B3LYP/B2	-0.631	-0.645	0.579	0.467	0.052	0.178
ГЛЕАЗ	MP2/B1	-0.702	-0.830	0.653	0.485	0.049	0.345
	MP2/B2	-0.649	-0.816	0.666	0.554	-0.016	0.262
	B3LYP/B1	-0.674	-0.690	0.446	0.303	0.228	0.387
FVoSh	B3LYP/B2	-0.650	-0.677	0.516	0.400	0.133	0.277
глеби	MP2/B1	-0.710	-0.846	0.485	0.277	0.225	0.569
	MP2/B2	-0.671	-0.836	0.623	0.464	0.049	0.371
	B3LYP/B1	a	a 	a 	^a	^a	^a
EV ₀ D:	B3LYP/B2	-0.663	-0.683	0.470	0.343	0.193	0.340
глеві	MP2/B1	^a	^a	^a	^a	^a	^a
	MP2/B2	-0.687	-0.844	0.544	0.386	0.142	0.457

Table S6. B3LYP and MP2 Calculated Values of the Mulliken Atomic Charges (in au) in ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Using B1 and B2 Basis sets.

^aCalculations for Bi-containing species could not be performed using B1 basis sets (aug-cc-pVTZ-PP) in the GAMESS software where ECP integrals are limited up to core potentials corresponding to the *g* angular momentum.

Table S7. MP2 (B3LYP) Calculated Values (in au) of the BCP Properties of the F–Ng and Ng–Y Bonds in ³FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Compounds with B1 Basis Sets for FNgAs and FNgSb Molecules and B2 Basis Sets for FNgBi Molecules.

		F-Ng Bond		
Complexes	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	$\mathbf{E}_{d}(\mathbf{r})$	G(r)/p(r)
	0.092	0.271	-0.022	0.975
F=KI=AS	(0.077)	(0.259)	(-0.009)	(0.954)
	0.084	0.267	-0.016	0.989
F-Kr-Sb	(0.071)	(0.248)	(-0.006)	(0.958)
	0.077	0.240	-0.014	0.961
F-Kr-Bi	(0.065)	(0.222)	(-0.007)	0.937
F-Xe-As	0.086	0.231	-0.026	0.968
	(0.082)	(0.219)	(-0.019)	(0.900)
F–Xe–Sb	0.087	0.217	-0.026	0.926
	(0.077)	(0.215)	(-0.016)	(0.895)
D W D	0.079	0.200	-0.021	0.897
F-Xe-Bi	(0.074)	(0.198)	(-0.015)	(0.876)
		Ng-Y Bond		
Complexes	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	$\mathbf{E}_{d}(\mathbf{r})$	G(r)/p(r)
$E - Kr - \Lambda c$	0.075	0.014	-0.028	0.415
г -к і-Аз	(0.067)	(0.033)	(-0.019)	(0.410)
	0.060	0.039	-0.019	0.476
F-KI-50	(0.053)	(0.043)	(-0.013)	(0.447)
	0.055	0.066	-0.013	0.537
Г-КІ-DI	(0.047)	(0.063)	(-0.008)	(0.507)
E Va Aa	0.079	-0.017	-0.031	0.337
F-AC-AS	(0.065)	(0.017)	(-0.018)	(0.339)
E Vo Sh	0.058	0.013	-0.018	0.362
r=xe=50	(0.052)	(0.023)	(-0.013)	(0.353)
E V- D	0.052	0.037	-0.012	0.417
г-ле-ві	(0.048)	(0.041)	(-0.009)	(0.406)

Table S8. Various Topological Properties at the Local Electron Energy Density Critical Points [(3,+1) HCP] for the FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) Ions Calculated Using the B3LYP and MP2 Methods with B1 Basis Sets for FNgAs and FNgSb Molecules and B2 Basis Sets for FNgBi Molecules.

			F	–Ng Bond			
Molecules	Methods	R _{F-Ng} ^a	R(F) ^b	R(Ng) ^b	$E_{d (HCP)}^{c}$	$\rho_{(HCP)}^{d}$	$-E_{d (HCP)}/\rho_{(HCP)}$
F. K. A.	B3LYP	2.144	0.992	1.152	-0.009	0.078	0.116
F-Kr-As	MP2	2.078	0.964	1.114	-0.022	0.092	0.233
E K Gl	B3LYP	2.184	1.007	1.177	-0.005	0.071	0.077
I KI SU	MP2	2.117	0.981	1.136	-0.016	0.084	0.188
E V _m Di	B3LYP	2.220	0.979	1.241	-0.005	0.067	0.077
F-KI-BI	MP2	2.158	0.949	1.209	-0.012	0.080	0.157
E Va Aa	B3LYP	2.198	0.985	1.213	-0.018	0.083	0.215
r-Ae-As	MP2	2.167	0.985	1.182	-0.025	0.087	0.281
E Va Ch	B3LYP	2.227	0.993	1.234	-0.014	0.078	0.185
F-Xe-S0	MP2	2.176	0.982	1.194	-0.025	0.088	0.280
E V D'	B3LYP	2.244	0.917	1.327	-0.012	0.083	0.143
F-Ae-Bi	MP2	2.212	0.927	1.285	-0.018	0.086	0.208
			N	g–Y Bond			
Molecules	Methods	R _{Ng-Y} ^a	R(Ng) ^b	$R(Y)^{b}$	$E_{d (HCP)}^{c}$	$\rho_{(HCP)}^{d}$	$-E_{d(HCP)}/\rho_{(HCP)}$
E Va Aa	B3LYP	2.545	1.275	1.270	-0.017	0.069	0.251
F-KI-AS	MP2	2.490	1.256	1.234	-0.025	0.077	0.327
E Va Ch	B3LYP	2.749	1.346	1.403	-0.012	0.055	0.218
F-KI-S0	MP2	2.683	1.346	1.338	-0.018	0.062	0.293
E V _m Di	B3LYP	2.839	1.401	1.438	-0.008	0.048	0.167
F-KI-BI	MP2	2.766	1.411	1.355	-0.013	0.055	0.232
E Va Aa	B3LYP	2.701	1.402	1.299	-0.017	0.065	0.263
F-Ae-As	MP2	2.597	1.367	1.230	-0.030	0.080	0.376
E-Vo-Sh	B3LYP	2.907	1.475	1.432	-0.012	0.053	0.230
г-ле-50	MP2	2.859	1.471	1.388	-0.017	0.058	0.295
E V. D.	B3LYP	2.978	1.511	1.467	-0.009	0.048	0.187
г-ле-Ві	MP2	2.939	1.514	1.425	-0.012	0.052	0.235

^aCalculated optimized bond length (Å) with aug-cc-pVTZ-PP basis set.

^bDistance (Å) of the HCP from the atom in parentheses.

^cEnergy density (hartree a_0^{-3}) at the HCP.

^dElectron density (e a_0^{-3}) at the HCP.