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1. Relaxation time: quantum mechanical modeling 

For our electronic transport calculations we used model expressions for the scattering 

relaxation time, dependent on carrier energy and temperature. These expressions are 

derived from a quantum mechanical treatment with some suited approximations, namely 

parabolic band behavior (but including anisotropic masses) for the electronic band 

structure and simple parameterizations for the phonon bands (linear dispersion for 

acoustic phonons, fixed energies for polar optical phonons). We included three scattering 

processes: impurity scattering (IS), acoustic phonon scattering (APS), and polar optical 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2016



phonon scattering (POS). The total scattering rate is thus obtained according to the 

Matthiessen's rule, as: 
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In the following, we first derive the general quantum mechanical expression for the 

relaxation time in case of elastic scattering, and then the specific formulas for the three 

processes mentioned above. Finally, we describe our calculation for the deformation 

potentials of MAPI, which is a key parameter for the modeling, and at our knowledge not 

yet reported in literature. 

1.1 General expression for elastic scattering 

Bloch-Boltzmann transport starts from the assumption that the mean free path of the 

electron is much larger than the characteristic electron wavelength. In this hypothesis, 

even in presence of scattering (out of equilibrium) the crystalline momentum can be still 

assumed as good quantum number and the electron still occupies a Bloch state kn ; the 

action of scattering is thus moving the carrier from kn to 'kn  (assuming intra-band 

scattering only). The change of distribution function due to collisions is: 

         )2()(1)'(kk'W)'(1)(k'kW'- 
t

f(k)
 




kfkfkfkfdk

col

 

where the 2 terms are for scattering into or out of k, W the scattering rate, and Pauli 

principle has been accounted. At equilibrium the net collision rate vanishes (principle of 

detailed balance): 
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Also the Boltzmann distribution can be written, to the linear order in the electric field: 
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After substitution of Eq.3 and 4 in Eq.2 and some manipulations, it can be shown that the 

collision rate in case of elastic scattering can be expressed through the definition of an 

energy-dependent relaxation time:
1
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where: 
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1.2 Impurity scattering. 

Following the Brooks-Herring development (in 3D), the probability that the electron 

undergoes a momentum change from k to k' due to the scattering with the Coulomb 

potential of a ionized impurity with ionic charge IZ  and concentration In is: 
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Clearly the delta function expresses the energy conservation; 0  is the dielectric constant, 

and  TKneq BI 0

22

0 /   the squared Debye screening length. Substituting Eq.7 into Eq.6 

and solving the integral assuming parabolic band modeling, we obtain the well-known 

Brooks-Herring formula: 
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where   3/1***~
zyx mmmm  is the geometrically averaged band mass. 

 

1.3 Acoustic phonon scattering. 

Strictly speaking, the scattering with acoustic phonons is an inelastic process; however, 

since acoustic phonon energies are typically small, we can still use Eq.6 to define a 

relaxation time. From the Fermi golden rule: 
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where N,k  and ',' Nk are electron momentum and phonon occupancy of initial and final 

states, respectively. We can model the long-wavelength limit of the acoustic waves as an 

homogeneous strain: 
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 where the linear change of the band edge with an applied strain is called deformation 

potential D: 
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where i=x, y, z, and the strain can be expressed as the linear-order derivative of the space 

dilatation:  
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Then, substituting Eqs.10-12 into Eq.9 and Eq.6, and assuming parabolic band modeling 

and linear acoustic phonon dispersion, it can be shown
1
 that the relaxation time for the 

acoustic phonon scattering in the deformation potential approximation is: 
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where  is the mass density, s the sound velocity, m~  the geometrically averaged band 

mass. Emission and absorption contributions are both included in Eq.13. The 2
nd

 term to 

the right is the piezoelectric scattering, i.e. the contribution due to the change in 

polarization induced by an elastic strain in case of polar materials;  is an adimensional 

parameter called electromechanical coupling.  

 

1.4 Polar optical phonon scattering. 

The scattering with optical phonons is essentially inelastic, thus the simple expression of 

Eq.6 cannot be applied. Nevertheless, it was  shown by Ridley
2,3

 that an appropriate 

generalization to the relaxation time can still be furnished. However, the exact treatment 

is too cumbersome to be used in practical calculations, thus we recur to an approximation 

which is still sufficiently accurate for our means. Following Ridley, for a relevant 

longitudinal optical phonon of energy LO  we take: 
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Eq.14 is quite accurate for LO  , while Eq.15 is exact in the LO  limit, and a 

reasonable approximation for LO  . When more than a single LO phonon is 

important for the scattering processes, they can be treated as independent scatterers and 

then summed according to Matthiessen's rule.  

1.5 Parameters. 

The parameters entering the relaxation time expressions for MAPI are in large portion 

well established in literature: s =3.1x10
5
 cm/s,  0 =60 (at room-T),  =6.5, emm 2.0~  , 

LO =80.9 cm
-1

. Also, we take  =0, since at room-T (which is the temperature region 

of more interest for our means) the piezoelectric response of MAPI can be assumed small 

or discardable. On the other hand, at our knowledge, an evaluation of the deformation 

potentials in literature was missing, thus we performed accurate calculations to establish 

the values of D for electrons and holes in the orthorhombic structure. 

 



2. Deformation potentials of MAPI. 

We calculated the deformation potentials for MAPI by finite differences, i.e. applying 

1% strains along the three axes of the orthorhombic structures, and evaluating the 

changes induced at the band extremes. The band structure results are reported in Fig.S1. 

In the calculations under strain the atoms are kept fixed to their ground-state crystal 

coordinates, in order to include only the change due to a pure space dilatation or 

contraction.  Also, the spurious rigid-shift effects on the band structure due to 

electrostatic potential change under strain has been extracted out in Fig.S1 by careful 

realignment of the deepest Pb (5d) semi-core levels.    

 

Figure S1: Band structure of orthorhombic MAPI in the equilibrium structure (black lines) and under an 

applied positive (red lines) and negative (green lines) strain of 1%. Panels a), b), c) display conduction 

bands for strains applied along the a, b, c axes of the orthorhombic cell, respectively; panels d), e), f) are 
for strains applied along  a, b, c but for valence bands. 

 

The valence band top and conduction band bottoms at  point calculated for the 

orthorhombic ground-state structure (described in Ref.4) and the structure under positive 

and negative 1% strain, are reported in Tab.S1. The ground-state VBT is fixed at zero, 

thus the CBB equals the band gap. The deformation potential is calculated as the change 

in the band energy extrema for the applied strain, averaging over positive and negative 

strains; thus for conduction: 
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for j=a, b, c, and analogous equation for the VBT. 

 

Table S1: Calculated valence (VBT) and conduction (CBB) band extremes for MAPI in the ground-state 

orthorhombic structure (unstrained) and under applied 1% strain along the axes of the orthorhombic cell. 
The deformation potentials Di average the band shifts for positive and negative strain. D is the deformation 

potential averaged over the 3 axes. The band gaps for the strains along the three directions are also reported. 

 VBT (eV) CBB (eV) gap (eV) 

unstrained  0.0  1.614 1.614 

a axis  

 = 1%  0.089  1.666 1.577 

 = +1% -0.101  1.546 1.647 

Da -9.5 -6.046  

b axis  

 = 1%  0.105  1.683 1.578 

 = +1% -0.104  1.545 1.649 

Db -10.48 -6.88  

c axis  

 = 1%  0.082  1.705 1.623 

 = +1% -0.077  1.526 1.603 

Dc -7.94 -8.97  

D -9.31 -7.30  

 

From Tab.S1 we see that the deformation potentials are always negative, i.e. a positive 

strain (lattice stretching) shift down both VBT and CBB energies along each direction, 

while a negative strain (lattice shrinking) shift VBT and CBB to lower energies. This is 

reasonable, since the anti-bonding Pb (6s, 6p) states are stabilized by an increase of Pb-I 

distance, and destabilized by a Pb-I shrinking. Notice that the sing of the deformation 

potential has no effects on the scattering rate with the acoustic phonons, which depends 

on D
2
 (Eq.13). Also, since we are interested in the 3D-averaged transport properties, we 

considered the 3D-averaged deformation potentials, also reported in the Table: -9.31 eV 

and -7.30 eV for holes and electrons, respectively, are those used for our transport 



calculations described in the article. These values are typical of ordinary semiconductors, 

e.g. for bulk GaAs the conduction band deformation is reported between -7 and -9.5 eV
5
 . 

This similarity highlights once more the inorganic character of MAPI. 
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