Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

SUPPORTING INFORMATION

Expanding the applicability of electrostatic potentials to the realm of transition states

Priya Bhasi, Zanele P. Nhlabatsi, Sanyasi Sitha*

Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, South Africa 2006

Table S1: Results for the effect of various basis sets on B3LYP method for the OH + NO₂ \rightarrow HNO3 reaction potential energy surface. Where $\Delta E_1 = E_{TS} - E_{Reactants}$, $\Delta E_2 = E_{TS} - E_{Product}$ and $\Delta E_3 = E_{Reactants} - E_{Product}$. All the energies are in kcal/mol and are ZPE corrected.

Basic sets	ΔE_1	ΔE_2	ΔE_3
6-31G	32.1	69.5	37.4
6-31G(d)	31.6	77.8	46.2
6-31+G(d)	29.2	72.4	43.2
6-31++G(d)	29.2	72.5	43.3
6-31++G(d,p)	29.1	72.2	43.1
6-31++G(2df,2p)	28.3	72.4	44.1
6-31++G(2df,2pd)	28.3	72.4	44.1
6-31++G(3df,2pd)	28.4	72.5	44.1
6-31++G(3df,3pd)	28.3	72.4	44.1
Aug-CC-pVDZ	28.5	72.1	43.6
Aug-CC-PVTZ	28.2	71.5	43.3
Aug-CC-PVQZ	28.2	71.8	43.6

Table S2: Results for the effect of various methods using 6-31++G(3df,2pd) basis set for the OH + NO₂ \rightarrow HNO3 reaction potential energy surface. Where $\Delta E_1 = E_{TS} - E_{Reactants}$, $\Delta E_2 = E_{TS} - E_{Product}$ and $\Delta E_3 = E_{Reactants} - E_{Product}$. All the energies are in kcal/mol and are ZPE corrected.

Methods	ΔE_1	ΔE_2	ΔE_3
HF	96.8	109.7	12.9
B3LYP	28.4	72.5	44.1
X3LYP	29.3	73.9	44.6
O3LYP	23.7	69.1	45.4
B3PW91	29.8	76.5	46.7
M06	26.0	76.8	50.8

Figure S1: Computed ESP map of transition state calculated from the B3LYP/6-31++G (3df,3pd) method at 0.001 au electron density surfaces. Quantitative values of electrostatic potentials are also in au.

Cartesian Coordinates of stationary points

Transition State

Transition State: X3LYP/6-31++G(3df,2pd)

200
600
5900
3900
3700

Transition State: O3LYP/6-31++G(3df,2pd)

Imaginary	requency 631	.6697i	
Ν	0.74156300	0.03855300	0.24301900
0	0.74734100	-1.06498500	-0.12122300
0	0.55175000	1.13608700	-0.10264500
0	-1.68788400	-0.18860100	0.03284800
Н	-2.08059900	0.67012100	-0.17297500

Transition State: M06/6-31++G(3df,2pd)

Imaginar	y frequency 730.	6674i	
Ν	0.71873700	0.05711200	0.22917000
0	0.75592600	-1.04244100	-0.11497500
0	0.47875000	1.14070600	-0.09749500
0	-1.60962600	-0.22557800	0.03255500
Н	-2.03155600	0.61871200	-0.16486200

Transition State: HF/6-31++G(3df,2pd)

Imaginary	frequency 750	.1492i	
Ν	0.73097400	0.26118900	0.00000700
0	1.29515100	-0.69703600	0.00003400
0	-0.07981200	0.98012200	-0.00001800
0	-1.54990100	-0.48808300	-0.00012000
Н	-2.44031100	-0.18835100	0.00077400

Transition State: B3PW91/6-31++G(3df,2pd)

Imaginary frequency 713.0316i

	0	2	1 2		
Ν			0.72126100	0.05389900	0.23798600
0			0.75270400	-1.04619100	-0.11865900
0			0.48913900	1.13998100	-0.10153000
0			-1.61939500	-0.22018500	0.03184500
Η			-2.02841600	0.63387100	-0.15915000

Transition State: B3LYP/6-31G

Imaginary frequency 720.1156i

Ν	0.67910900	0.15153000	-0.29653200
0	0.22163200	1.18799700	0.13952300
0	0.98354800	-0.93482400	0.12787000
0	-1.53605400	-0.43209900	0.00493400
Н	-2.10676900	0.37070600	-0.10288900
O O H	0.98354800 -1.53605400 -2.10676900	-0.93482400 -0.43209900 0.37070600	0.12787000 0.00493400 -0.10288900

Transition State: B3LYP/6-31G(d)

Imagina	ry frequency 722.	.0501i	
Ν	0.69783600	0.11158500	-0.28101700
0	0.33262500	1.16121600	0.12921700
0	0.88677800	-0.97819600	0.12638700
0	-1.57648500	-0.34572200	-0.00701400
Н	-2.02819500	0.52052500	-0.02159700

Transition State: B3LYP/6-31+G(d)

Imaginary frequency 681.54231				
Ν	0.72077400	0.06169100	-0.25803400	
0	0.47347800	1.15190900	0.11111400	
0	0.78152900	-1.04313700	0.12637700	
0	-1.62723000	-0.23972900	-0.02919400	

Transition State: B3LYP/6-31+G(d,p)

Ν	0.721195	0.060981	0.257547
0	0.781181	-1.043807	-0.126867
0	0.475400	1.151744	-0.110343
0	-1.629356	-0.237823	0.030985
Η	-2.066162	0.612216	-0.153032

Transition State: B3LYP/6-31++G(d)

Imaginary frequency 681.1372i

Ν	0.72097200	0.06182700	-0.25797100
0	0.47319300	1.15196900	0.11106000
0	0.78198800	-1.04301700	0.12638500
0	-1.62761500	-0.24006100	-0.02927100
Н	-2.06733700	0.61609100	0.14041300

Transition State: B3LYP/6-31++G(d,p)

Imaginary frequency 680.0879i

Ν	0.72127600	0.06063400	-0.25751800
0	0.47636000	1.15163700	0.11028900
0	0.78050400	-1.04418700	0.12690000
0	-1.62971900	-0.23715000	-0.03108200
Н	-2.06609200	0.61316000	0.15377300

Transition State: B3LYP/6-31++G(2df,2p)

Imaginary frequency 698.0726i

	<u> </u>	-	1 2		
Ν			0.72191600	0.05197600	-0.24318400
0			0.49675300	1.14246100	0.10330300
0			0.75466500	-1.04979600	0.12141500
0			-1.62764500	-0.21737900	-0.03296700
Η			-2.04359300	0.63388200	0.16828800

Transition State: B3LYP/6-31++G(2df,2pd)

Imaginary frequency 698.2202i

	<u> </u>	2	1 2		
Ν			0.72195200	0.05165000	-0.24312200
0			0.49759900	1.14234200	0.10328200
0			0.75390300	-1.05014400	0.12139500
0			-1.62767800	-0.21655100	-0.03300900
Η			-2.04425800	0.63327900	0.16850700

Transition State: B3LYP/6-31++G(3df,2pd)

Imaginary frequency 695.3579i

0.72279500	0.05174500	-0.24443800
0.49818000	1.14226100	0.10392100
0.75511800	-1.05028700	0.12180000
-1.63088900	-0.21698300	-0.03256500
-2.03883400	0.63785600	0.16581900
	0.72279500 0.49818000 0.75511800 -1.63088900 -2.03883400	0.722795000.051745000.498180001.142261000.75511800-1.05028700-1.63088900-0.21698300-2.038834000.63785600

Transition State: B3LYP/6-31++G(3df,3pd) Imaginary frequency 695.9760i

Ν	0.72258100	0.05302100	-0.24437500
0	0.49492600	1.14283400	0.10409700
0	0.75788600	-1.04904800	0.12149300
0	-1.63006300	-0.21965600	-0.03191400
Н	-2.04005600	0.63580800	0.16122000

Transition State: B3LYP/Aug-CC-pVDZ

Imaginary	frequency 691.	4846i	
Ν	0.72156500	0.05904300	-0.24965700
0	0.47927700	1.14791000	0.10705300
0	0.77168400	-1.04488900	0.12312100
0	-1.62667700	-0.23291200	-0.03027200
Н	-2.04522700	0.62582200	0.14838700

Transition State: B3LYP/Aug-CC-pVTZ

Imaginary frequency 699.2081i

Ν	0.72413900	0.04965600	-0.23941000
0	0.50393900	1.13788100	0.10116300
Ο	0.75071900	-1.04929900	0.12030000
0	-1.63289000	-0.21186200	-0.03429900
Η	-2.04311300	0.63864900	0.17856100

Transition State: B3LYP/Aug-CC-pVQZ

Imaginar	y frequency 700.	4789i	
Ν	-0.72363800	0.04987400	0.23899900
0	-0.50304700	1.13718300	-0.10115900
0	-0.75102800	-1.04823600	-0.11983800
0	1.63191600	-0.21231000	0.03362500
Н	2.04274700	0.63778100	-0.17401300

Geometry of NO₂:B3LYP/6-31+G(d,p)

Ν	0.00000	0.00000	0.326575
0	0.00000	1.106215	-0.142877
0	0.00000	-1.106215	-0.142877

Geometry of NO:B3LYP/6-31+G(d,p)

0	0.00000	0.00000	0.540241
Ν	0.00000	0.00000	-0.617418

Geometry of OH:B3LYP/6-31+G(d,p)

0	0.00000	0.00000	0.108890
Н	0.00000	0.00000	-0.871121

Geometry of NH:B3LYP/6-31+G(d,p)

)-()	
N	0.000000	0.00000	0.130641
Н	0.00000	0.000000	-0.914485

Geometry of the product HNO₃:B3LYP/6-31+G(d,p)

	(
Ν	-0.148211	0.034479	-0.000119
0	-1.044289	-0.767762	0.000105
0	-0.182339	1.252003	0.000036
0	1.139414	-0.543149	-0.000040
Н	1.735192	0.229907	0.000031

Geometry of the OH + NO₂ transition state:B3LYP/6-31+G(d,p)

Geometry of the OH + NO₂ transition state: uB3LYP/6-31+G(d,p) with guess=mix

Ν	0.026846	0.031320	0.016208
0	0.029476	-0.014828	1.193878
0	0.798024	0.095352	-0.880378
0	0.732522	-2.304861	0.199943
Н	1.513231	-2.472610	-0.359690

Geometry of the OH + NO₂ transition state:wB97xD/6-31+G(d,p)

Ν	0.710657	0.069396	0.245468
0	0.769624	-1.030361	-0.121801
0	0.437889	1.147944	-0.106215
0	-1.574609	-0.250826	0.031471
Н	-2.037826	0.580169	-0.145911

Geometry of the OH + NO₂ transition state:uwB97xD/6-31+G(d,p) – Broken Symmetry – Guess=mix option.

Figure S2: Computed ESP maps of OH, NH, NO, and NO₂, using B3LYP/6-31+G (d,p) method at 0.001 au electron density surfaces. ESP colour scheme: Red represents regions of negative and blue represents regions of positive electrostatic potentials.

Analysis of the ESP maps for the reactants HN and OH are quite similar. In both the cases there are positive electrostatic potentials around the H-atoms and negative electrostatic potentials around the N-atom and O-atom. Analysis of the ESP of the NO₂ shows that the regions of the positive electrostatic potential are above and below the central N-atom (above and below the plane of NO₂). These positive regions are usually referred as π -holes. In NO₂, accumulation of the π -holes above and below the N-atom can be explained as, "because of the more electronegative O-atoms, π -bonding electrons are drawn sufficiently towards the O-atoms, so that the associated rearrangement of the electronic density leaves a region of positive potentials above and below the N=O π -bond. The π -hole region is almost on the central region of the NO molecule with a partial shifted in densities towards N-atom of the NO.