APPENDIX A. Calculated structrures of uranium containing minerals using the new pseudopotential.

Lattice parameters calculated for a selected series of uranium containing minerals with small cutoffs and K meshes. All calculations were carried out using the PBESOL functional.¹ Note that for solids as uranium dioxide (uraninite) the calculations predict them to be metals. This is a well known deffect of simple DFT calculations.²⁻⁴ Hybrid functionals or DFT simple modifications such as the inclusión of the Mott-Hubbard correction improving the description of strongly correlated uranium 5f electrons (DFT+U) may restore this deffect predicting the insulating state for these solids.⁴ However these methods cannot be used currently to determine the vibrational spectra within CASTEP, and they were not used in the calculations.

Mineral N. of atoms per unit cell / N. of valence electrons Symmetry	Experimental/ Calculated values	Lattice parameters and Cell volume a,b,c (Å) α,β,γ (deg) V (Å ³)	E cut (eV) K mesh
Uraninite (12/204) Fm-3m	UO ₂ ª	5.468, 5.468, 5.468 90, 90, 90 163.5	-
	Calculated	5.2915, 5.2915, 5.2915 90, 90, 90 148.16	830 5 x 5 x 5
U ₃ O ₈ - (22/108) (Amm2)	U ₃ O ₈ ^b	4.145, 11.95, 6.722 90, 90, 90 332.96	-
	Calculated	4.1142, 11.6899, 6.7298 90, 90, 90 323.66 8.64	750 6 x 2 x 4
α-UO ₂ (OH) ₂ (28/160) Cmce	UO ₂ (OH) ₂ ^c	4.242, 10.302, 6.868 90, 90, 90 300.1	-

Table A.1. Calculated structures of uranium containing minerals compared with experimental values.

	Calculated	4.1841, 10.1017, 6.7969 90.00, 90.00, 90.00 287.28	830 3 x 1 x 2
β-UO2(OH)2 (28/160) Pbca	UO ₂ (OH) ₂ ^d	5.6438, 6.2867, 9.9372 90, 90, 90 352.6	-
	Calculated	5.7850, 6.0844, 9.6516 89.98, 90.00, 89.93 339.72	830 3 x 2 x 1
γ-UO ₂ (OH) ₂ (14/80) P121/c1	UO ₂ (OH) ₂ ^e	5.56, 5.522, 6.416 90, 112.71, 90 181.7	-
	Calculated	5.3691, 5.6474, 6.3017 89.97, 111.55, 90.10 177.72	830 3 x 2 x 1
Brannerite (18/148) C12/m1	UTi ₂ O ₆ ^f	9.87, 3.76, 6.95 90, 119.5, 90 6.36 224.5	-
	Calculated	9.95, 3.71, 6.79 90, 121.82, 90 213.26 6.69	830 2 x 4 x 2
Rutherfordine (14/96) Pmmn O ₂	[UO ₂][CO ₃] ^g	4.85, 9.22, 4.3 90, 90, 90 192.3	-
	Calculated	4.8285, 9.3370, 4.2731 90, 90, 90 192.65	830 3 x 2 x 3
Grimselite (44/272) P-62c	$K_3Na[UO_2][CO_3]_3$ $[H_2O]^h$	9.302, 9.302, 8.260 90, 90, 120 619.0	900 2 x 2 x 2
	Calculated	9.3857, 9.38570, 8.3946 90.01, 90.01, 121.29 627.64	-

Coffinite (16/168) I41/amd	USiO4 ⁱ	6.995, 6.995, 6.263, 90, 90, 90, 306.449	-
	Calculated	6.9192, 6.9192, 6.2353 90, 90, 90 298.52	830 2 x 2 x 2
Vanderbrandeite (24/130) P-1	Cu[UO ₂][OH] ₄ ^j	5.449, 6.089, 7.855 78.1, 89.2, 88.56 254.9	-
	Calculated	5.2352, 6.3528, 8.5518 85.52, 86.89, 92.26 282.88	880 5 x 4 x 3
Becquerelite (236/1184) Pna21	Ca[UO ₂] ₆ O ₄ [OH] ₆ [H2O] ₈ ^k	13.8378, 14.9238, 12.3781 90, 90, 90 2500.88	-
	Calculated	13.7854, 14.6297, 12.2014 90, 90, 90 2460.73	800 1 x 1 x 1
Uranophane-alpha (68/320) P1211	$CaH_{2}[H_{2}O]_{5}[SiO_{4}]_{2}$ $[UO_{2}]_{2}^{I}$	6.665, 7.002, 15.909 90, 97.27, 90 736.5	-
	Calculated	6.6276, 6.9614, 15.7299 90, 98.17, 90 718.37	880 2 x 2 x 1
Uranophane-beta (136/640) P121/c1	$Ca[H_2O]_5O_6[OH]_2$ $Si_2[UO_2]^m$	6.632, 15.443, 13.966 90, 91.38, 90 1429.95	-
	Calculated	6.6084, 15.3807, 13.8872 90, 89.875, 90 1411.51	800 2 x 1 x 1
Schoepite (meta) (320/1536) Pbcn	[UO ₂]₄O[OH] ₆ . [H ₂ O]₅ ⁿ	14.6861, 13.9799, 16.7063 90, 90, 90 3430	-

	Calculated	14.4837, 13.8257, 16.3729 90.00 , 90.00, 90.00 3378.63	830 1 x 1 x 1
Soddyite (136/768) Fddd O2	[UO ₂] ₂ [SiO ₄][H ₂ O] ₂ °	8.334, 11.212, 18.668 90, 90, 90 1744.4	-
	Calculated	7.9018, 11.4763, 18.6857, 90, 90, 90 1694.48	830 2 x 1 x 1
Studtite (68/280) C12/c1	[UO ₂][O ₂][H ₂ O] ₄ ^p	14.068, 6.721, 8.428 90, 123.356, 90 665.6	-
	Calculated	13.6114, 6.6938, 8.3936 90.00, 122.88, 90.00 642.27	830 1 x 2 x 1
Kasolite (36/272) P21/c	[UO ₂]Pb[SiO ₄][H ₂ O] ^q	6.704, 6.932, 13.252 90, 104.22, 90 596.98	-
	Calculated	6.7035, 6.8325, 13.1795 90, 101.92, 90 590.63	820 2 x 2 x 1
Boltwoodite (26/144) P1211	K[H ₃ O][UO ₂][SiO ₄] ^r	6.638, 7.064, 7.073 90, 105.75, 90 319.2	-
	Calculated	6.6229, 7.0252, 7.0239 90, 104.57, 90 316.29	830 2 x 2 x 2

a) L. Desgranges, G. Baldinozzi, G. Rousseau, J.-C. Nièpce and G. Calvarin, *Inorg. Chem*, 2009, **48**, 7585-7592.

b) J. B. Ainscough and I. F. Ferguson, J. Inorg. Nucl. Chem., 1974, **36**, 193-194.

c) J. Taylor, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, 27, 1088-1091.

d) J. C. Taylor and H. J. Hurst, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, 27, 2018-2022.

e) S. Siegel, H. R. Hoekstra and E. Gebert, *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.*, 1972, **28**, 3469-3473.

f) A. M. Lejus and D. Goldberg, C. R. Seances Acad. Sci. (Ser. C), 1966, 263, 1223-1226.

g) R. J. Finch, M. A. Cooper, F. C. Hawthorne and R. C. Ewing, *Can. Mineral.*, 1999, **37**, 929-938.

h) L. H. Fuchs and E. Gebert, Am. Mineral., 1958, 43, 243-248.

i) Y. Li and P. C. Burns, Can. Mineral., 2001, 39, 1147-1151.

j) A. Rosenzweig and R. R. Ryan, Cryst. Struct. Commun., 1977, 6, 53-56.

k) M. K. Pagoaga, D. E. Appleman and J. M. Stewart, Can. Mineral., 1987, 72, 1230-1238.

I) D. Ginderow, Acta Crystallogr., Sect. C: Struct. Chem., 1988, 44, 421-424.

m) K. Viswanathan and O. Harneit, Am. Mineral., 1986, 71, 1489-1493.

n) M. T. Weller, M. E. Light and T. Gelbrich, , Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 2000, 56, 577-583.

o) F. Demartin, C. M. Gramaccioli and T. Pilati, *Acta Crystallogr., Sect. C: Struct. Chem.*, 1992, **48**, 1-4.

p) P. C. Burns and K.-A. Hughes, , Am. Mineral., 2003, 88, 1165-1168.

q) V. I. Mokeeva, Sov. Phys. Crystallogr. (Engl. Transl.) - Kristallografiya, 1965, 9, 621-622.

r) F. V. Stohl and D. K. Smith, , Am. Mineral., 1981, 66, 610-625.

APPENDIX B. Normal modes of rutherfordine (Pmmn symmetry)

Fig. B.1 The atomic motions associated to each Raman active vibrational normal mode of Rutherfordine (Pmmn symmetry).

Mode v=1483 cm⁻¹. Asymmetric CO_3^{2-} stretching (B_{2g}).

Mode v=1402 cm⁻¹. Asymmetric CO_3^{2-} stretching (A_g).

Mode v=1097 cm⁻¹. Symmetric CO_3^{2-} stretching (A_g).

Mode v=979 cm⁻¹. Antisymmetric UO_2^{2+} stretching (B_{3g}).

Mode v=886 cm⁻¹. Symmetric UO_2^{2+} stretching (A_g).

Mode v=752 cm⁻¹. Out of plane CO_3^{2-} bending (B_{3g}).

Mode v=746 cm⁻¹. In plane CO_3^{2-} bending (B_{2g}).

Mode v=678 cm⁻¹. In plane CO_3^{2-} bending (A_g).

Mode v=333 cm⁻¹. In plane CO_3^{2-} bending (B_{2g}).

Mode v=265 cm⁻¹. Symmetric UO_2^{2+} bending plus in plane CO_3^{2-} bending (B_{2g}).

Mode v=246 cm⁻¹. Symmetric UO_2^{2+} bending (A_g).

Mode v=241 cm⁻¹. Symmetric UO_2^{2+} bending plus in plane CO_3^{2-} bending. (B_{2g}).

Mode v=240 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (B_{1g}).

Mode v=217 cm⁻¹. CO_3^{2-} translation (A_g).

Mode v=190 cm⁻¹. Antisymmetric UO_2^{2+} bending (B_{3g}).

Mode v=165 cm⁻¹. CO_3^{2-} translation (B_{3g}).

Mode v=150 cm⁻¹. Out of plane CO_3^{2-} bending (B_{3g}).

Mode v=147 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (B_{1g}).

Mode v=43 cm⁻¹. UO_2^{2+} and CO_3^{2-} translation (B_{3g}).

Mode v=32 cm⁻¹. UO_2^{2+} and CO_3^{2-} translation (A_g).

Mode v=31 cm⁻¹. UO_2^{2+} and CO_3^{2-} translation (B_{2g}).

APPENDIX C. Normal modes of rutherfordine (Imm2 symmetry)

Fig. C.2 The atomic motions associated to each Raman active vibrational normal mode of Rutherfordine (Imm2 symmetry)

Mode v=1481 cm⁻¹. Asymmetric CO_3^{2-} stretching (B₂).

Mode v=1403 cm⁻¹. Asymmetric CO_3^{2-} stretching (A₁).

Mode v=1100 cm⁻¹. Symmetric CO_3^{2-} stretching (A₁).

Mode v=890 cm⁻¹. Symmetric UO_2^{2+} stretching (A₁).

Mode v=750 cm⁻¹. Out of plane CO_3^{2-} bending (B₁).

Mode v=750 cm⁻¹. In plane CO_3^{2-} bending (B₂).

Mode v=678 cm⁻¹. In plane CO_3^{2-} bending (A₁).

Mode v=338 cm⁻¹. In plane CO_3^{2-} bending (B₂).

Mode v=251 cm⁻¹. Symmetric UO_2^{2+} bending plus in plane CO_3^{2-} bending (B₂).

Mode v=240 cm⁻¹. Symmetric UO₂²⁺ bending plus in plane CO₃²⁻ bending (B₂).

Mode v=237 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (A₂).

Mode v=234 cm⁻¹. Symmetric UO_2^{2+} bending (A₁).

Mode v=219 cm⁻¹. Symmetric UO_2^{2+} bending plus CO_3^{2-} translation (A₁).

Mode v=197 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (B₁).

Mode v=182 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (B₁).

Mode v=162 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (B₁).

Mode v=142 cm⁻¹. Antisymmetric UO_2^{2+} bending plus out of plane CO_3^{2-} bending (A₂).

REFERENCES

- 1. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, Phys. Rev. Lett., 2008, **100**, 136406.
- 2. J. P. Crocombette, F. Jollet, L. T. Nga and T. Petit, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2001, **64**, 104107.
- 3. G. Beridze and P. M. Kowalski, J. Phys. Chem. A, 2014, **118**, 11797-11810.
- a) S. L. Dudarev, D. N. Manh and A. P. Sutton, *Philosophical Magazine Part B*, 1997, **75**, 613-628; b) D. A. Andersson, G. Baldinozzi, L. Desgranges, D. R. Conradson and S. D. Conradson, *Inorg. Chem.*, 2013, **52**, 2769-2778; c) P. Nerikar, T. Watanabe, J. S. Tulenko, S. R. Phillpot and S. B. Sinnott, *J. Nucl. Mater.*, 2009, **384**, 61-69; d) X.-D. Wen, R. L. Martin, L. E. Roy, G. E. Scuseria, S. P. Rudin, E. R. Batista, T. M. McCleskey, B. L. Scott, E. Bauer, J. J. Joyce and T. Durakiewicz, *J. Chem. Phys.*, 2012, **137**, 154707; e) X.-D. Wen, R. L. Martin, G. E. Scuseria, S. P. Rudin, E. R. Batista and A. K. Burrell, *J. Phys.: Condens. Matterr*, 2013, **25**, 025501.