Electronic Supplementary Information

Examining Structural Evolution of Bicarbonate-Water Clusters: Insights from Photoelectron Spectroscopy, Basin-Hopping Structural Search, and Comparison with Available IR Spectra Studies

Hui Wen,^{1,2} Gao-Lei Hou,^{2,}Yi-Rong Liu,¹ Xue-Bin Wang, *,² Wei Huang*,^{1,3}

¹Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China ²Physical Sciences Division, Pacific Northwest National Laboratory, P. O. Box 999, MS K8-88, Richland, Washington 99352, USA ³School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China

*E-mails: <u>Huangwei6@ustc.edu.cn</u>, <u>Xuebin.Wang@pnnl.gov</u>

		Functionals									
		B3LYP	O3LYP	X3LYP	PW91	MP2	M06-2X	M06-L			
Bond Length	1	1.69337	1.75483	1.68651	1.64596	1.68991					
	2	2.05667	2.25816	2.04236	1.99027	2.06269					
	3	1.88727	1.94759	1.88042	1.85835	1.88803					
Configuration							يني مي مي				

Table S1. Optimized structures and bond parameters of $HCO_3^{-}(H_2O)_2$ under different DFT functionals with same basis set (6-311++G**), and compared with MP2 method.

	11+	6.605+	7.083	7.332+	7.371+	7.515+	7.542+	7.604	7.162+	7.723+	7.829+	7.847	7.954	8.023
	10+2	6.552	7.009₀	7.144	7.338	7.399	7.438	7.519	7.543+	7.664	7.714	7.780	7.809	7.847
1.	₀₀	6.528°	6.957 ^a	7.127	7.228	7.299₀	7.323₽	7.418_{e}	7.468	7.525¢	7.621 ²	7.7110	8.039	8.113+
.Ι ϵ	8 ⁰	6.415°	6.877	6.997₽	7.095	7.160	7.298	7.381	7.046	7.729+	7.973	7.986₀	8.394	9.011
	7.	6.380	6.764°	6.938	7.013+	7.134	7.282₽	7.315 ⁴	7.485	7.736	7.7700	8.000	8.932°	9.198
	•9	6.247 ⁴	6.762¢	6.934₽	6.974₽	7.084	7.183	7.213	7.402	7.663+	7.816	\$.970	9.126	9.278
	5 ⁴⁰	6.097₽	6.613+	7.012	7.055+	7.200	7.332	7.544	7.563+	7.838	9.142	9.424	9.474	9.763
	4+	5.787+	6.454	6.746 [⊕]	6.853	6.966₀	7.147	7.235	7.410	9.108	9.209	9.336₽	9.553+	9.922°
	3⇔	5.541+	6.130	6.472 ⁴	6.704	6.807	7.138	7.158	8.842	9.068	9.305+	9.636₽	10.674°	10.824
	2	5.153 ⁴²	5.662	6.039	6.094	6.772	6.823+	8.337+	8.677	9.397	10.238	10.568	10.940	11.817_{e}
	1+	4.844	5.331 ⁴	5.677+	6.057+	6.547 ⁴	8.498	8.876	9.905	10.083	10.778	11.504	13.733+	24.201+
	°*0	4.097	4.662+	5.016	5.875+	8.221+	9.183	9.389 ₀	10.094	12.851	23.562 ^a	24.212 ⁴	26.795+	277.701+
	n.	HOMO	-10	-2+2	- <mark>3</mark> ⇔	-40	-5¢	-6	-7.	- <mark>8</mark> -	-9₀	-10	-11+	-12

Table S2. Top 12 occupied molecular orbital

Figure S1. Low-lying isomers of $HCO_3^{-}(H_2O)_3$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S2. Low-lying isomers of $HCO_3^{-}(H_2O)_4$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S3. Low-lying isomers of $HCO_3^-(H_2O)_5$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S4. Low-lying isomers of $HCO_3^{-}(H_2O)_6$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S5. Low-lying isomers of $HCO_3^{-}(H_2O)_7$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S6. Low-lying isomers of $HCO_3^{-}(H_2O)_8$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated. The structures that are similar to those in the work of Neumark & Asmis are also labeled in parentheses.

Figure S7. Low-lying isomers of $HCO_3^{-}(H_2O)_9$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated.

Figure S8. Low-lying isomers of $HCO_3^{-}(H_2O)_{10}$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated.

Figure S9. Low-lying isomers of $HCO_3^{-}(H_2O)_{11}$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated.

Figure S10. Low-lying isomers of $HCO_3^{-}(H_2O)_{12}$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated.

Figure S11. Low-lying isomers of $HCO_3^{-}(H_2O)_{13}$ under B3LYP/6-311++G(3df, 3pd) level of theory, relative energies (in kcal/mol) are indicated.

Figure S12. The stick density of states (DOS) spectra of the minimum energy isomer of $HCO_3^{-}(H_2O)_{1-6}$.

Figure S13. The stick density of states (DOS) spectra of HCO₃⁻(H₂O)_{7-12.}

Figure S14. Simulated PES spectra of $HCO_3^{-}(H_2O)_{n,}$ n=1-4 accompany with structures, and relative energies (in kcal/mol) of the low-lying isomers at the B3LYP/6-311++(3df,3pd) level of theory, marked n-a and n-b, respectively. Any structures that are similar to those in the work of Neumark and Asmis are also labeled in red.

Figure S15. Simulated PES spectra of $HCO_3^{-}(H_2O)_n$, n=5-8 accompany with structures, and relative energies (in kcal/mol) of the low-lying isomers at the B3LYP/6-311++(3df,3pd) level of theory, marked n-a and n-b, respectively.

Figure S16. Simulated PES spectra of $HCO_3^{-}(H_2O)_{n,}$ n=9-12 accompany with structures, and relative energies (in kcal/mol) of the low-lying isomers at the B3LYP/6-311++(3df,3pd) level of theory, marked n-a and n-b, respectively.

Fig. S17 Experimental (copied from Ref. 20) and theoretical infrared spectra of $HCO_3^-(H_2O)_1$, clusters.

Fig. S18 Experimental (copied from Ref. 20) and theoretical infrared spectra of $HCO_3^-(H_2O)_n$, n=2-4 clusters.

Fig. S19 Experimental (copied from Ref. 20) and theoretical infrared spectra of $HCO_3^-(H_2O)_5$ and $HCO_3^-(H_2O)_6$ clusters.

Fig. S20 Experimental (copied from Ref. 20) and theoretical infrared spectra of $HCO_3^-(H_2O)_7$ clusters.

Fig. S21 Experimental (copied from Ref. 20) and theoretical infrared spectra of $HCO_3^-(H_2O)_8$ clusters.

Fig. S22 Simulated IR spectra (O-H stretching mode: $2600-3900 \text{ cm}^{-1}$) of $\text{HCO}_3^{-}(\text{H}_2\text{O})_n$, n=1-6 clusters at B3LYP/6-311++G(3df, 3pd).

Fig. S23 Simulated IR spectra (O-H stretching mode: $2600-3900 \text{ cm}^{-1}$) of $\text{HCO}_3^-(\text{H}_2\text{O})_n$, n=7-10 clusters at B3LYP/6-311++G(3df, 3pd).

Fig. S24 Simulated IR spectra (O-H stretching mode: 2600-3900 cm⁻¹) of $HCO_3^{-}(H_2O)_n$, n=11-13 clusters at B3LYP/6-311++G(3df, 3pd).

Fig. S25 The most probable structures of $HCO_3^-(H_2O)_n$, n=1-13 clusters determined by comparison of NIPE spectra, BH structural search and available IR spectra.

Fig. S26 Molecular orbitals of the minimum energy isomer of $HCO_3^{-}(H_2O)_1$.

Fig. S27 Molecular orbitals of the minimum energy isomer of $HCO_3^{-}(H_2O)_2$.

Fig. S28 Molecular orbitals of the minimum energy isomer of HCO₃⁻(H₂O)₃.

Fig. S29 Molecular orbitals of the minimum energy isomer of $HCO_3^-(H_2O)_4$.

Fig. S30 Molecular orbitals of the minimum energy isomer of $HCO_3^-(H_2O)_{10}$.

Fig. S31 Symbols and labels of each atom of $HCO_3^-(H_2O)_{10}$.

Figure S32. Top five low-lying isomers of $HCO_3^{-}(H_2O)_n$ (n = 9-13) at B3LYP/6-311++G(3df, 3pd) level of theory. Relative energies (in kcal/mol) are indicated.