Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

SI for 'Thermal decomposition of NaNH₂, NaNH₂-NaOH

Jepsen et al

Supporting Information

Thermal decomposition of sodium amide, NaNH₂, and sodium amide hydroxide composites, NaNH₂–NaOH

Lars H. Jepsen^a,^b Peikun Wang^c, Guotao Wu^c, Zhitao Xiong^c, Flemming Besenbacher^d, Ping Chen^c

and Torben R. Jensen^{a*}

^aCenter for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

^bDanish Technological Institute, Kongsvang Alle 29, 8000 Aarhus C, Denmark

^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, P.R. China

^{*d}</sup><i>Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.*</sup>

*Corresponding author

Jepsen et al

Figure S1 Rietveld refinement of SR-PXD data for 0.33NaNH₂-0.67NaOH (s12) measured at 177 °C, $\lambda = 0.69449$ Å. Tic marks NaOH, 31.8 wt% (top) and Na(OH)_{1-x}(NH₂)_x, 68.2 wt%. The following agreement factors were obtained for Na(OH)_{1-x}(NH₂)_x: R_B = 4.95 %, R_F = 6.63 %, R_p = 1.73 %, R_{wp} = 2.99 % (not corrected for background) and $\chi^2 = 0.204 \cdot 10^4$ (this value is high because of the very high counting statistics accumulated by the 2D detector).

Figure S2 *In-situ* SR-PXD of 0.33NaNH₂-0.67NaOH (s12) during heating from RT to 250 °C (5 °C/min, $\lambda = 0.69449$ Å). The temperature difference between each PXD pattern is approx. 2 °C. A zoom of this data in the 2 θ range 6.3° to 7.8° is shown in Figure 1a. Symbols: Δ NaNH₂; \Box NaOH; \blacktriangle Na(OH)_{1-x}(NH₂)_x.

Figure S3 FTIR spectrum collected at RT for 0.70NaNH₂-0.30NaOH (s8) heated to 160 °C.

Figure S4 *In-situ* SR-PXD of NaNH₂ (s2) measured during heating from RT to 200 °C and subsequent cooling to RT (\pm 5 °C/min, λ = 0.39997 Å). Symbols: Δ NaNH₂; \square NaOH; \forall Na(OH)_{1-x}(NH₂)_x.

Figure S5*In-situ* SR-PXD of 0.60NaNH₂-0.40NaOH (s10) measured during heating from RT to 175 °C and subsequent cooling to RT (± 5 °C/min, λ = 0.39997 Å). Symbols: △ NaNH₂; □ NaOH; ▼Na(OH)_{1-x}(NH₂)_x;**□ u1**.

Figure S6 *In-situ* SR-PXD of 0.72NaNH₂-0.28NaOH (s7) measured during heating from RT to 175 °C and subsequent cooling to RT (± 5 °C/min, λ = 0.39997 Å). Symbols: Δ NaNH₂; □ NaOH; ▼Na(OH)_{1-x}(NH₂)_x;■ u1.

Figure S7 *In-situ* SR-PXD of 0.74NaNH₂-0.26NaOH (s6) measured during heating from RT to 165 °C and subsequent cooling to RT (± 5 °C/min, λ = 0.39997 Å). Symbols: △ NaNH₂; □ NaOH; ▼Na(OH)_{1-x}(NH₂)_x,■ **u1**.

Figure S8 *In-situ* SR-PXD of 0.77NaNH₂-0.23NaOH (s5) measured during heating from RT to 175 °C and subsequent cooling to 75 °C (± 3.5 °C/min, $\lambda = 0.9937$ Å). Symbols: Δ NaNH₂; \square NaOH; ▼Na(OH)_{1-x}(NH₂)_x; \blacksquare **u1**.

a) NaNH₂ (s2)

Figure S9 Temperature-programmed photographic analysis (TPPA) at 4 °C/min under argon atmosphere for xNaNH₂–(1-x)NaOH (x = 1 and 0.77, s2 and s5)

Figure S10 A picture of the glass tube after heating it with NaNH₂.