Table I. Parameters of the MLR potential energy functions for LiRb ($X^1\Sigma^+$, $b^3\Pi_0$, $b^3\Pi_1$, and $b^3\Pi_2$); (D_e , C_6 , C_8 , C_{10} , and RMS are in cm⁻¹ and R_e in Å).

	$X^1\Sigma^+$	$b^3\Pi_0$	$b^3\Pi_1$	$b^3\Pi_2$
Φ_1	$-1.65954937025401 \times 10^{-1}$	$-3.78398704267304{\times}10^{-1}$	$-4.049457391207{\times}10^{-1}$	-3.96253964468881×10 ⁻¹
Φ_2	-1.47307939648485	-2.08602333963445	-2.215351035993	-2.20213436424538
Φ_3	-1.97338379582326	-2.56927140910410	-3.264558950536	-2.35173837004823
Φ_4	-1.38027909025489	-1.43049147334407	-3.050086921839	$-5.91220913105060{\times}10^{-1}$
Φ_5	-3.10008460420709	1.78225976899681	-1.710834154652	2.46508485791987
Φ_6	$2.76700727829455{\times}10^{-2}$	7.66451872829829	5.081856378213	$2.57455631974559{\times}10^{-2}$
Φ_7	3.87369094379414×101	-7.14854447188408	7.086886475278	$-2.64447134485736 \times 10^{1}$
Φ_8	2.53584028381134×101	$-5.08900091944738{\times}10^1$	-2.778706352292×101	$-3.50882103348123{\times}10^1$
Φ_9	$-2.00382611469885{\times}10^2$	$2.49125186839839{\times}10^1$	$-1.421723602772 \times 10^{-3}$	8.31944656218654×101
Φ_{10}	-1.70200286729326×10 ²	$1.93081077883750{\times}10^2$	1.556169646790×10 ²	1.35634319407802×10 ²
Φ_{11}	5.65969408006438×10 ²	$-7.22734817151931{\times}10^1$	$-3.085538829674 \times 10^{1}$	$-2.11914011262861{\times}10^2$
Φ_{12}	6.31900726303575×10 ²	$-4.97189489019564{\times}10^2$	$-4.960255896665{\times}10^2$	$-3.80469263366913{\times}10^2$
Φ_{13}	-7.01912308117566×10 ²	$-2.68640518836253{\times}10^{-4}$	$-8.906121300635{\times}10^1$	2.31105600260294×10 ²
Φ_{14}	$-1.06930287706414{\times}10^{3}$	6.62350529372493×10 ²	6.889317536016×10 ²	5.68694739304169×10 ²
Φ_{15}	1.93617920751443×10 ²	2.06562155454963×10 ²	2.994276912088×10 ²	$-2.55452230898177{\times}10^{-5}$
Φ_{16}	7.37566903911735×10 ²	$-3.46134451649826{\times}10^2$	$-3.600138450378{\times}10^2$	$-3.55020831467025{\times}10^2$
Φ_{17}	2.61902215894053×10 ²	$-1.85137632969633{\times}10^2$	$-2.204552708352{\times}10^2$	$-1.44189857126391{\times}10^2$
D_e	5.92248703376990×10 ³	8.12171680858926×10 ³	8.173948239463×10 ³	8.13029649310318×10 ³
R_{ef}	4.17455163720961	4.83710057104409	4.524140514933	5.19631239923550
R_e	3.50842065424474	3.42298734382155	3.425183001402	3.42521229008978
C_6	1.40363992679874×10 ⁷	2.10300247441515×107	2.008398463231×107	1.62123027435094×107
C_8	3.15014624259183×10 ⁸	2.06762595786173×10 ⁸	2.389271963868×10 ⁸	1.92915092290023×10 ⁸
C_{10}	$1.38241918191638{\times}10^{10}$	$1.33307197656858{\times}10^{10}$	1.633636391834×10 ¹⁰	1.33307197424527×10 ¹⁰
RMS	0.913	0.293	0.408	0.671

	$X^1\Sigma^+$	$b^3\Pi_0$	$b^3\Pi_1$	b ³ П ₂
Φ_1	1.715683332194×10 ⁻⁷	-8.026327323369×10 ⁻¹	$-7.030930216457 \times 10^{-1}$	-8.252245908588×10 ⁻¹
Φ_2	2.910825628023×10 ⁻³	-4.963239574780	-6.011555023005	-5.754051354585
Φ_3	$8.964799417088 \times 10^{-1}$	-8.832726056703	$-1.043270036803 \times 10^{1}$	$-1.017830777296 \times 10^{1}$
Φ_4	2.286455141751	-1.294831196322×101	$-1.469914785791 \times 10^{1}$	$-1.450478148265 \times 10^{1}$
Φ_5	4.747102006155	-1.552121292253×101	-1.763222805939×101	-1.755518871064×101
Φ_6	-2.255859147812	-2.078211039330×101	-2.406492775135×101	-2.522306755104×101
Φ_7	-3.918374417797×101	-3.346609570984×101	-3.255958806778×101	-3.414496674951×101
Φ_8	3.872867266058×101	$-1.791370269797{\times}10^{-5}$	1.108525552957×101	1.946689748004×10 ¹
Φ_9	3.939721964050×10 ²	8.702239465175×101	7.396373224446×101	8.987905385713×10 ¹
Φ_{10}	1.422315882231×10 ²	-6.816557317230×101	-1.339887601156×10 ²	-1.591465425363×10 ²
Φ_{11}	-1.437320225593×10 ³	-4.525849115371×10 ²	-4.536199203378×10 ²	-5.217263023272×10 ²
Φ_{12}	-1.370602980416×10 ³	-1.534335647194×10 ²	-1.271898306412×101	-2.224465632295×10 ⁻³
Φ_{13}	2.175423127586×10 ³	7.152874187306×10 ²	7.648149456145×10 ²	$8.845841017115 \times 10^{2}$
Φ_{14}	3.400823738586×10 ³	5.241810781065×10 ²	3.678642465431×10 ²	4.218059822592×10 ²
Φ_{15}	$-3.433514638602 \times 10^{2}$	-4.724866229763×10 ²	$-5.703017603885{\times}10^2$	-6.379874610370×10 ²
Φ_{16}	$-2.491254021484 \times 10^{3}$	-6.218924644594×10 ²	$-5.724118331690 \times 10^{2}$	-6.381349777965×10 ²
Φ_{17}	-1.035511984572×10 ³	-1.755752073924×10 ²	-1.370694368434×10 ²	-1.522923854416×10 ²
D_e	3.448802115964×10 ³	6.041207109500×10 ³	6.070473227620×10 ³	6.070128593453×10 ³
R _{ef}	5.970357086365	7.289408879436	7.415067260591	7.408836214314
R_e	4.168255833410	4.173686985404	4.177248133287	4.182027322588
C_6	3.206438724187×10 ⁷	9.358387394682×10 ⁶	7.226601885029×10 ⁶	6.782585935388×10 ⁶
C_8	3.169173120000×10 ⁸	3.133481705083×10 ⁸	9.274106105677×10 ⁶	1.805047335392×10 ⁸
C_{10}	$1.333071974400 \times 10^{10}$	1.333886564720×10 ¹⁰	1.548205956765×10 ⁹	8.941686782998×10 ⁹
RMS	0.518	0.325	0.318	0.294

Table II. Parameters of the MLR potential energy functions for KRb ($X^{1}\Sigma^{+}$, $b^{3}\Pi_{0}$, $b^{3}\Pi_{1}$, and $b^{3}\Pi_{2}$); (D_{e} , C_{6} , C_{8} , C_{10} , and RMS are in cm⁻¹ and R_{e} in Å).

	Υ 1 Σ +	ь зп.	Ь3П.	Ь3∏.	В¡П
0	05.0	02.0	02.0	04.1	56.1
0	95.9	93.9	93.9	94.1	56.1
1	286.3	280.8	280.8	281.2	164.4
2	4/4.5	466.6	466.5	466.9	266.9
3	660.6	651.0	650.9	651.3	363.6
4	844.4	834.0	834.0	834.2	454.6
5	1026.1	1015.6	1015.5	1015.7	539.9
6	1205.5	1195.6	1195.6	1195.7	619.8
7	1382.8	1374.2	1374.1	1374.3	694.3
8	1557.8	1551.3	1551.1	1551.3	763.8
9	1730.6	1726.9	1726.5	1726.8	828.6
10	1901.1	1900.9	1900.3	1900.8	888.9
11	2069.2	2073.4	2072.7	2073.2	945.0
12	2235.0	2244.5	2243.5	2244.1	997.2
13	2398.3	2413.9	2412.7	2413.5	1045.7
14	2559.2	2581.9	2580.4	2581.3	1090.9
15	2717.6	2748.4	2746.6	2747.6	1132.9
16	2873.4	2913.3	2911.2	2912.3	1171.8
17	3026.6	3076.7	3074.3	3075.4	1207.7
18	3177.2	3238.5	3235.8	3236.9	1240.7
19	3325.1	3398.8	3395.7	3396.9	1270.7
20	3470.3	3557.5	3554.0	3555.2	1297.9
21	3612.6	3714.6	3710.6	3711.9	1322.1
22	3752.1	3870.1	3865.6	3867.0	1343.5
23	3888.5	4024.0	4018.9	4020.4	1361.9
24	4021.9	4176.2	4170.5	4172.1	1377.4
25	4152.1	4326.7	4320.3	4322.1	1390.0
26	4279.0	4475.5	4468.4	4470.4	1399.9
27	4402.4	4622.6	4614.8	4616.9	1407.0
28	4522.4	4767.9	4759.3	4761.7	1411.8
29	4638.7	4911.4	4901.9	4904.6	1414.4
30	4751.1	5053.1	5042.7	5045.6	_
31	4859.6	5192.8	5181.5	5184.8	_
32	4964.0	5330.7	5318.4	5322.0	_
33	5064.1	5466.5	5453.3	5457.2	_
34	5159.7	5600.4	5586.0	5590.4	_
35	5250.7	5732.1	5716.7	5721.5	_
36	5336.8	5861.6	5845.1	5850.5	_
37	5417.8	5988.9	5971.3	5977.2	_
38	5493.6	6113.8	6095.1	6101.7	_
39	5563.8	6236.4	6216.5	6223.8	_
40	5628 3	6356.4	6335 3	6343.4	_

TABLE III. The vibrational levels (N = 0) for LiRb.

41	5686.8	6473.7	6451.5	6460.5	-
42	5739.0	6588.4	6564.9	6574.9	-
43	5784.8	6700.1	6675.5	6686.6	-
44	5824.0	6808.9	6783.1	6795.3	-
45	5856.6	6914.5	6887.6	6900.9	-
46	5882.4	7016.8	6988.7	7003.4	-
47	5901.4	7115.7	7086.5	7102.5	-
48	5913.6	7211.0	7180.6	7198.1	-
49	-	7302.4	7270.9	7290.0	-
50	_	7389.8	7357.2	7378.0	-
51	_	7473.1	7439.4	7461.8	_
52	_	7551.9	7517.2	7541.4	-
53	_	7626.1	7590.4	7616.4	-
54	_	7695.5	7658.8	7686.8	_
55	_	7759.8	7722.2	7752.1	_
56	_	7818.9	7780.4	7812.4	_
57	_	7872.5	7833.3	7867.3	_
58	_	7920.7	7880.8	7916.8	_
59	_	7963.2	7922.7	7960.7	_
60	_	8000.2	7959.0	7999.1	_
61	_	8031.6	7989.9	8031.9	_
62	_	8057.7	8015.4	8059.3	-
63	_	8078.5	8035.8	8081.5	_
64	_	8094.4	8051.4	8098.8	_
65	_	8105.9	8062.7	8111.5	_
66	_	8113.6	8070.2	8120.2	_
67	_	8118.2	8074.6	8125.7	-
68	_	8120.6	8076.9	8128.7	_
69	_	_	_	8130.1	_

FIG. 1. *Ab initio* PECs of KRb for the ground state $X^1\Sigma^+$ and the SOC effect of the $b^3\Pi$ state. The inset figure shows the enlarged SOC effect of the $b^3\Pi$ state around the equilibrium position R_e .