Supporting Information

for

Investigation on Electrochemical and Photoelectrochemical properties of Ni–Al LDH photocatalyst

Corresponding authors

Prof. Kentaro Teramura and Prof. Tsunehiro Tanaka Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan Tel: +81–75–383–2559 Fax: +81–75–383–2561 E-mail address: teramura@moleng.kyoto-u.ac.jp

List of the authors

Shoji IGUCHI^a, Soichi KIKKAWA^a, Kentaro TERAMURA^{a,b,c*}, Saburo HOSOKAWA^{a,b}, and Tsunehiro TANAKA^{a,b*}

Affiliation and full postal address

- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo–Ohara, Nishikyo–ku, Kyoto 615–8245, Japan
- c. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan

Table S1 Amounts of products evolved and the total number of consumed electrons in the photocatalytic conversion of CO_2 in water using the powder samples of Zn–Al, Mg–Al, and Ni–Al LDH. Photocatalytic reaction system: closed circulation system, photoirradiation time: 8 h, photocatalyst weight: 0.5 g, volume of reaction solution: 350 mL, light source: 400 W high pressure Hg lamp (quartz jacket). The selectivity toward CO evolution was calculated by $100 \times (CO / (CO + H_2))$.

Photocatalyst	Amounts of products / µmol		Total number of consumed	Selectivity toward
	H ₂	CO	electrons / µmol	CO evolution (%)
Zn-Al LDH	121.2	4.3	251.0	3.4
Mg-Al LDH	47.4	2.5	99.8	5.0
Ni-Al LDH	10.3	19.8	60.2	65.7

Figure S1XRD patterns of powder sample (a) Ni–Al, (b) Mg–Al, (c) Zn–Al, (d)Ni–Ga, (e) Ni–In LDH, synthesized via same procedure to that mentioned in main text.

Figure S2 Davis-Mott plot of (a) Ni–Al LDH, (b) Mg–Al LDH, (c) Zn–Al LDH,
(d) Ni–Ga LDH, (e) Ni–In LDH, (f) TiO₂, and (g) Ta₂O₅ based on the results of UV/Vis diffused reflection spectra.

Figure S3 Mott-Schottky plot for **(A)** Ni–Al LDH/FTO, **(B)** Mg–Al LDH/FTO, and **(C)** Zn–Al LDH/FTO based on the results of the impedance measurements at a frequency of 52.0 kHz. Electrochemical cell: X LDH/FTO working electrode, Ag/AgCl reference electrode, Pt wire counter electrode, and 0.1 M Na₂SO₄ *aq.* electrolyte solution. Atmosphere: He.

Figure S4Change of Mott-Schottky plot of Ni–Al LDH/FTO in accordance withthe value of pH of the electrolyte solution. pH of the electrolyte solution: (a) 6.2 or (b)12.7. Frequency: 52.0 kHz. Electrochemical cell: Ni–Al LDH/FTO working electrode,Ag/AgCl reference electrode, and Pt wire counter electrode. Atmosphere: He.