# Electronic Supplementary Information for 

"Interlayer Coupling in Two-Dimensional Titanium Carbide MXenes"<br>Tao Hu, ${ }^{\text {ab }}$ Minmin Hu, ${ }^{\text {ac }}$ Zhaojin Li, ${ }^{\text {ab }}$ Hui Zhang, ${ }^{\text {ab }}$ Chao Zhang, ${ }^{\text {a }}$ Jingyang Wang ${ }^{\text {a }}$ and Xiaohui Wang*a<br>${ }^{a}$ Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese<br>Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China<br>${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, China<br>${ }^{\text {cS School of }}$ Materials Science and Engineering, University of Science and Technology of China,<br>Hefei 230026, China

## Content

## Methods

Calculation details

Bench mark calculation of long-range interaction

Young's modulus calculation

## Tables

Table S1: Bench mark calculation: Calculated and experimental lattice constants and stacking energies of graphite and $\mathrm{MoS}_{2}$ with DFT and DFT-D

Table S2: Calculated lattice constants of stacked bare $\mathrm{Ti}_{3} \mathrm{C}_{2}$ and $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}(\mathrm{~T}=\mathrm{OH}, \mathrm{O}$, and F) with three schemes of DFT-D

Table S3: Binding energies of two stacked models of bare $\mathrm{Ti}_{2} \mathrm{C}$ and $\mathrm{Ti}_{2} \mathrm{CT}_{2}(T=\mathrm{OH}, \mathrm{O}$, and F) along [0001]

Table S4: Binding energies of two stacked models of bare $\mathrm{Ti}_{3} \mathrm{C}_{2}$ and $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}(\mathrm{~T}=\mathrm{OH}, \mathrm{O}$, and F) along [0001]

Table S5: Total energies and Binding energies of two stacked models of half-half terminated $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$ ( $T=\mathrm{OH}, \mathrm{O}$, and F ) along [0001] with GGA-PW91-OBS

Table S6: Total energies of $\mathrm{Nb}_{2} \mathrm{CT}_{2}(T=\mathrm{OH}, \mathrm{O}$, and F ) monolayers with $T$ located at different sites

Table S7: Binding energies of two stacked models of $\mathrm{Ti}_{2} \mathrm{CT}_{2}, \mathrm{Nb}_{2} \mathrm{CT}_{2}$ and $\mathrm{Ti}_{2} \mathrm{NT}_{2}(T=$ OH, O, and F) along [0001] with GGA-PW91-OBS

## Figures

Fig. S1: Polyhedral models of two distinct $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ stacking types.

Fig. S2: Binding energies of stacked bare $T_{3} C_{2}$ and terminated $\mathrm{Ti}_{3} \mathrm{C}_{2} T_{2}(T=\mathrm{O}, \mathrm{F}$, and $\mathrm{OH})$, graphite and $\mathrm{MoS}_{2}$ with DFT and DFT-D.

Fig. S3: Configuration of hydrogen bonds in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$.

Fig. S4: Configuration of intermolecular bonds in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$.
Fig. S5: Fitted lines for calculating the Young's modulus along [0001] in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$.

Fig. S6: Atomistic elongation simulation of stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}(\mathrm{OH})$ along [0001].

Fig. S7: Binding energies of two stacked models of $\mathrm{Ti}_{2} \mathrm{CT}_{2}, \mathrm{Nb}_{2} \mathrm{CT}_{2}$ and $\mathrm{Ti}_{2} \mathrm{~N} T_{2}(T=\mathrm{OH}$, O , and F) along [0001].

## Methods

## Calculation details

Ultrasoft potentials ${ }^{1}$ were utilized for the calculations. The Monkhorst-Pack scheme ${ }^{2}$ with $9 \times 9 \times 1 \mathrm{k}$ point meshes were used for the integration in the irreducible Brillouin zone so that the individual spacing was less than $0.05 \AA^{-1}$. In line with our previous work, ${ }^{3}$ the energy cutoff in the calculations was set to 380 eV . The Broyden-Fletcher-Goldfarb-Shanno minimization scheme ${ }^{4}$ was used to minimize the total energy and interatomic forces. The Fermi level was smeared by 0.1 eV . The convergence for energy was chosen as $1.0 \times 10^{-9} \mathrm{eV} /$ atom, and the structures were relaxed until the maximum force exerted on the atoms became less than $0.001 \mathrm{eV} / \mathrm{A}$.

## Bench mark calculation of long-range interaction

As a prerequisite, we first tested the validity of DFT-D on the simulation of longrange interaction in two model layered materials like graphite (the graphite in this study is referred to as $A B$ stacking graphite unless specified otherwise) and $\mathrm{MoS}_{2}$. The calculated lattice parameters and binding energies agree well with the experimentally determined values, demonstrating that DFT-D is reliable in the simulation of long-range interaction in layered materials (Table S1 in the Supporting Information). The calculated binding energies with the two schemes of DFT and DFTD are summarized in Fig. S2 in the Supporting Information. As shown in Fig. S2, the long-range interaction plays an indispensable role in the layered materials $\mathrm{Ti}_{n+1} \mathrm{C}_{n} T_{2}$ as well as in graphite and $\mathrm{MoS}_{2}$. Neglecting the long-range interaction may cause inaccuracy or even mistakes. Therefore, in the investigation of interlayer coupling of MXenes in this work, long-range interaction was taken into consideration by using the DFT-D scheme.

## Young's modulus calculation

The validity of the results of Young's modulus can be examined by calculating the Young's moduli of graphite and $\mathrm{MoS}_{2}$ with the same scheme. The calculated results are close to experimental results (graphite, 36 GPa , which is measured to be 34 GPa ;
$\mathrm{MoS}_{2}, 26 \mathrm{GPa}$, the experimental result is 19 GPa ). The optimized structural configuration and total energy under each strain pattern are obtained by full relaxation with constraint of the strain. To ensure that the material is under uniaxial tension, lattice vectors in the transverse direction and internal atomic positions were fully relaxed at each pre-set strain.

- Tables

Table S1. Bench mark calculation: Calculated and experimental lattice constants and stacking energies of graphite and $\mathrm{MoS}_{2}$ with DFT and DFT-D

| Graphite |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| method | DFT | DFT |  | Ref. |
| functional | PBE | Grimme | OBS |  |
| $a \text { (Å) }$ | 2.47 | 2.46 | 2.46 | $2.46^{a}$ |
| $c(A ̊)$ | 11.74 | 6.43 | 6.75 | $6.70^{a}$ |
| $d(\AA)$ | 5.87 | 3.22 | 3.33 | $3.35{ }^{\text {a }}$ |
| $E_{\mathrm{b}}\left(\mathrm{J} / \mathrm{m}^{2}\right)$ | -0.01 | 0.26 | 0.52 | $0.36^{b}, 0.37^{c}, 0.32^{d}, 0.29^{e}, 0.58^{f}$ |
| $\mathrm{MoS}_{2}$ |  |  |  |  |
| method | DFT | DFT-D |  | Ref. |
| functional | PBE | Grimme | OBS |  |
| $a(A ̊)$ | 3.18 | 3.19 | 3.18 | $3.16^{9}$ |
| $c(A ̊)$ | 15.40 | 12.46 | 12.74 | $12.30^{9}$ |
| $d$ (Å) | 4.59 | 3.13 | 3.25 | $3.08{ }^{\text {g }}$ |
| $E_{\mathrm{b}}\left(\mathrm{J} / \mathrm{m}^{2}\right)$ | 0.01 | 0.29 | 0.37 | $0.22^{h}, 0.33^{i}, 0.52^{j}, 0.56^{k}$ |

${ }^{a}$ Ref. 5 (exp.), ${ }^{b}$ Ref. 6 (exp.), ${ }^{c}$ Ref. 7 (exp.), ${ }^{d}$ Ref. 8 (cal.), ${ }^{e}$ Ref. 9 (cal.), ${ }^{f}$ Ref. 10 (cal.), ${ }^{9}$ Ref. 11 (exp.), ${ }^{h}$ Ref. 12 (exp.), 'Ref. 9 (cal.), ' ${ }^{\text {Ref. }} 13$ (cal.), ${ }^{\text {Ref. } 14 \text { (cal.) }}$

Table S2. Calculated lattice constants of stacked bare $\mathrm{Ti}_{3} \mathrm{C}_{2}$ and $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}(\mathrm{~T}=\mathrm{OH}, \mathrm{O}$, and F) with three schemes of DFT-D

| formula | $a$ (Å) | $c$ ( $\AA$ ) |
| :---: | :---: | :---: |
| $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | $3.05{ }^{\text {a }}, 3.07^{b}, 2.98^{c}$ | $21.88^{a}, 24.03^{b}, 21.67^{c}$ |
| Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | $3.06{ }^{\text {a }}, 3.09{ }^{b}, 3.00^{c}$ | $19.28^{a}, 19.67^{b}, 18.70^{\text {c }}$ |
| $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | $3.02{ }^{\text {a }}, 3.03^{b}, 2.97^{c}$ | $19.43^{a}, 20.04^{b}, 18.79^{c}$ |
| Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | $3.02{ }^{\text {a }}, 3.04^{b}, 2.97^{c}$ | $18.59^{a}, 18.93^{b}, 17.85^{c}$ |
| $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | $3.05{ }^{\text {a }}, 3.07^{\text {b }}, 2.99^{c}$ | $19.72^{a}, 20.24^{b}, 19.05^{c}$ |
| Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | $3.05{ }^{\text {a }}, 3.07^{b}, 3.00^{c}$ | $18.70^{a}, 19.02^{b}, 17.84^{\text {c }}$ |
| $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}$ | $3.03^{a}, 3.06^{b}, 2.98^{c}$ | $14.88^{a}, 15.06^{b}, 14.54^{\text {c }}$ |
| Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}$ | $3.05{ }^{\text {a }}$, 3.08 ${ }^{\text {b }} 3.00^{c}$ | $14.44^{a}, 14.66^{b}, 14.14^{c}$ |

Table S3. Binding energies of two stacked models of bare $\mathrm{Ti}_{2} \mathrm{C}$ and $\mathrm{Ti}_{2} \mathrm{CT}_{\mathbf{2}}(\mathrm{T}=\mathrm{OH}, \mathrm{O}$, and F) along [0001] ${ }^{a}$

| formula | $\begin{gathered} E_{\text {stacked }} \\ (\mathrm{eV}) \end{gathered}$ | $E_{\text {monolayer }}$ (eV) | $(\AA \AA)$ | $\begin{gathered} E_{\mathrm{b}} \\ \left(\mathrm{~J} / \mathrm{m}^{2}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Bernal- $\mathrm{Ti}_{2} \mathrm{C}(\mathrm{OH})_{2}$ | -4277.12926 | -4276.09380 | 3.04871 | 2.0583 |
| Bernal- $\mathrm{Ti}_{2} \mathrm{CO}_{2}$ | -4245.04306 | -4244.48968 | 3.02486 | 1.1174 |
| Bernal- $\mathrm{Ti}_{2} \mathrm{CF}_{2}$ | -4696.54187 | -4696.01418 | 3.04024 | 1.0548 |
| Bernal- $\mathrm{Ti}_{2} \mathrm{C}$ | -3366.44361 | -3363.76173 | 3.00366 | 5.4921 |
| $\mathrm{SH}-\mathrm{Ti}_{2} \mathrm{C}(\mathrm{OH})_{2}$ | -8553.30416 | -4276.09380 | 3.03127 | 1.1225 |
| $\mathrm{SH}-\mathrm{Ti}_{2} \mathrm{CO}_{2}$ | -8489.98124 | -4244.48968 | 3.0117 | 1.0204 |
| $\mathrm{SH}-\mathrm{Ti}_{2} \mathrm{CF}_{2}$ | -9392.90569 | -4696.01418 | 3.03282 | 0.8811 |
| SH-Ti2 ${ }^{\text {C }}$ | -6732.58044 | -3363.76173 | 2.99486 | 5.2085 |
| graphite | -621.81029 | -310.73408 | 2.45388 | 0.5249 |
| MoS ${ }_{2}$ | -4994.97833 | -2497.28903 | 3.17673 | 0.3664 |

${ }^{a}$ Calculated with GGA-PW91-OBS

Table S4. Binding energies of two stacked models of bare $\mathrm{Ti}_{3} \mathrm{C}_{2}$ and $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathbf{2}}(\mathrm{T}=\mathrm{OH}$, 0 , and F) along [0001]

| functional | formula | $\begin{gathered} E_{\text {stacked }} \\ (\mathrm{eV}) \end{gathered}$ | $E_{\text {monolayer }}$ <br> (eV) | $(\AA)$ | $\begin{gathered} E_{\mathrm{b}} \\ \left(\mathrm{~J} / \mathrm{m}^{2}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GGA-PW91-OBS | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12078.07017 | -6037.92671 | 3.06204 | 2.1841 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12013.65137 | -6006.15310 | 3.02113 | 1.3615 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12916.90820 | -6457.84416 | 3.05759 | 1.2054 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10257.05786 | -5125.69117 | 3.05173 | 5.6297 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12076.97690 | -6037.92671 | 3.04904 | 1.1164 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12013.45801 | -6006.15310 | 3.01649 | 1.1694 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12916.71214 | -6457.84416 | 3.05057 | 1.0163 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10256.64232 | -5125.69117 | 3.03538 | 5.2739 |
|  | graphite | -621.8102899 | -310.73408 | 2.45388 | 0.5249 |
|  | $\mathrm{MoS}_{2}$ | -4994.978328 | -2497.28903 | 3.17673 | 0.3664 |
| GGA-PBE-Grimme | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12067.90244 | -6033.66962 | 3.08909 | 0.5452 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12004.67128 | -6002.17839 | 3.03792 | 0.3180 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12907.44947 | -6453.57820 | 3.07198 | 0.2869 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10249.70814 | -5122.71214 | 3.08142 | 4.1678 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12067.58456 | -6033.66962 | 3.07113 | 0.2402 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12004.55624 | -6002.17839 | 3.03502 | 0.2000 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12907.34595 | -6453.57820 | 3.06952 | 0.1858 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10249.18490 | -5122.71214 | 3.06461 | 3.6990 |
|  | graphite | -620.72495 | -310.27721 | 2.46057 | 0.2602 |
|  | MoS 2 | -4992.564934 | -2496.12446 | 3.18862 | 0.2871 |
| LDA-CAPZ-OBS | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12070.33969 | -6033.71385 | 3.00282 | 2.9833 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12006.38621 | -6002.30131 | 2.97349 | 1.8635 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12903.76034 | -6451.05582 | 2.99985 | 1.6924 |
|  | Bernal- $\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10251.89207 | -5122.8382 | 2.99998 | 6.3801 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ | -12068.87452 | -6033.71385 | 2.98098 | 1.5040 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$ | -12006.05460 | -6002.30131 | 2.96586 | 1.5249 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$ | -12903.38552 | -6451.05582 | 2.99215 | 1.3144 |
|  | $\mathrm{SH}-\mathrm{Ti}_{3} \mathrm{C}_{2}$ | -10251.47788 | -5122.83816 | 2.97776 | 6.0442 |
|  | graphite | -622.93556 | -311.18187 | 2.43227 | 0.8929 |
|  | $\mathrm{MoS}_{2}$ | -4991.88344 | -2495.51630 | 3.10253 | 0.8166 |

Table S5. Total energies and binding energies of two stacked models of half-half terminated $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$ ( $T=\mathrm{OH}, \mathrm{O}$, and F) along [0001] with GGA-PW91-OBS. The most stable configurations are highlighted in bold

| formula | $E_{\text {stacked }}(\mathrm{eV})$ | $E_{\mathrm{b}}\left(\mathrm{J} / \mathrm{m}^{2}\right)$ |
| :---: | :---: | :---: |
| Bernal-O(OH) | -12046.67853 | 2.6781 |
| Bernal-F(OH) | -12497.60829 | 1.7994 |
| Bernal-OF | $\mathbf{- 1 2 4 6 5 . 1 9 7 4 9}$ | 1.3588 |
| SH-O(OH) | $\mathbf{- 1 2 0 4 7 . 2 3 1 7 6}$ | 3.3169 |
| SH-F(OH) | $\mathbf{- 1 2 4 9 7 . 6 8 8 1 9}$ | 1.8772 |
| $\mathbf{S H - O F}$ | -12465.00644 | 1.1684 |

Table S6. Total energies of $\mathrm{Nb}_{2} \mathrm{CT}_{2}$ ( $T=\mathrm{OH}, \mathrm{O}$, and F ) monolayer with $T$ locate at different site. GGA-PBE was used and the spin was also taken into consideration. The most stable configurations are highlighted in bold

| $\mathrm{Nb}_{2} \mathrm{C}$ | O | F | OH |
| :---: | :---: | :---: | :---: |
| I | $\mathbf{- 4 1 3 5 . 9 2 4 0}$ | $\mathbf{- 4 5 8 6 . 6 2 9 2}$ | $\mathbf{- 4 1 6 6 . 7 6 9 4}$ |
| II | -4135.3667 | -4586.4071 | -4166.7362 |

I, the hollow site of three C atoms; II, the hollow site of three Nb atoms.

Table S7. Binding energies of two stacked models of $\mathrm{Ti}_{2} \mathrm{CT}_{2}, \mathrm{Nb}_{2} \mathrm{CT}_{2}$ and $\mathrm{Ti}_{2} \mathrm{~N} T_{2}$ ( $T=$ OH, O, and F) along [0001] with GGA-PW91-OBS. The most stable configuration of $\mathrm{Ti}_{2} \mathrm{~N} T_{2}$ according to ref. 15 is used

| formula | $\mathrm{Ti}_{2} \mathrm{CT}_{2}$ | $\mathrm{Nb}_{2} \mathrm{CT}_{2}$ | $\mathrm{Ti}_{2} \mathrm{NT}_{2}$ |
| :---: | :---: | :---: | :---: |
| Bernal-OH | 2.0583 | 1.7678 | 1.9018 |
| Bernal-O | 1.1174 | 1.1406 | 1.1997 |
| Bernal-F | 1.0548 | 0.9631 | 1.0291 |
| SH-OH | 1.1225 | 1.0977 | 1.1330 |
| SH-O | 1.0204 | 0.9169 | 1.0157 |
| SH-F | 0.8811 | 0.7134 | 0.9004 |

Figures


Fig. S1 Polyhedral models of two distinct $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ stacking types. (a) SH stacking, and (b) Bernal stacking. The terminations stabilize the layered structure by retaining Ti-centered $\mathrm{Ti}(\mathrm{C}, \mathrm{T})_{6}$ octahedra.


Fig. $\mathbf{S 2}$ Binding energies of stacked bare $\mathrm{Ti}_{3} \mathrm{C}_{2}$ and terminated $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathbf{2}}(\mathrm{T}=\mathrm{O}, \mathrm{F}$, and OH ), graphite and $\mathrm{MoS}_{2}$ with DFT and DFT-D. A stands for SH stacking, and B is short for Bernal stacking. Note that the binding energies of graphite, $\mathrm{MoS}_{2}$, and $T$ functionalized $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$ calculated with DFT approximate to zero compared with those calculated with DFT-D. The big difference in binding energy calculated with DFT and DFT-D indicates the long-range interaction plays an indispensable role in MXenes as well as graphite and $\mathrm{MoS}_{2}$.
(a)

(b)

(c)


Fig. S3 Configuration of hydrogen bonds in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$. (a) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$; (b) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}(\mathrm{OH})$; (c) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}(\mathrm{OH})$. Note that both the bond length and bond angle of stacked $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$ are in the range of dihydrogen bond ${ }^{16,17}$.
(a)

(b)

(c)


Fig. S4 Configuration of intermolecular bonds in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{2}$. (a) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}_{2}$; (b) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~F}_{2}$; (c) SH and Bernal $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{OF}$.


Fig. S5 Fitted lines for calculating the Young's modulus along [0001] in stacked $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$. The fitted Young's moduli along [0001] are 158 and 226 GPa for SH and Bernal stacked $\mathrm{Ti}_{3} \mathrm{C}_{2}(\mathrm{OH})_{2}$, respectively. The structures are fully relaxed while retain the strain along z axis.


Fig. S6 Atomistic elongation simulation of stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}(\mathrm{OH})$ along [0001]. (a) Stress-elongation curves in a simulation of tension procedure along the $c$ direction of two types of stacked $\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{O}(\mathrm{OH})$. (b) Interlayer distance and layer thickness in a simulation of tension procedure along the $c$ direction.


Fig. S 7 Binding energies of two stacked models of $\mathrm{Ti}_{2} \mathrm{CT}_{2}, \mathrm{Nb}_{2} \mathrm{CT}_{2}$ and $\mathrm{Ti}_{2} \mathrm{~N} T_{2}(T=\mathrm{OH}$, $\mathbf{O}$, and F) along [0001]. The trends are similar. The primary mode that holds the MXenes stacked are hydrogen bonds and intermolecular interactions, which are much stronger than van der Waals coupling in graphite and $\mathrm{MoS}_{2}$.

## REFERENCES

1 G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169-11186.
2 M. Methfessel and A. Paxton, Phys. Rev. B 1989, 40, 3616-3621.
3 T. Hu, H. Zhang, J. M. Wang, Z. J. Li, M. M. Hu, J. Tan, P. X. Hou, F. Li and X. H. Wang, Sci. Rep., 2015, 5, 16329.

4 T. H. Fischer and J. Almlof, J. Phys. Chem., 1992, 96, 9768-9774.
5 Y. Zhao and I. Spain, Phys. Rev. B, 1989, 40, 993-997.
6 R. Zacharia, H. Ulbricht and T. Hertel, Phys. Rev. B, 2004, 69, 155406.
7 W. Wang, S. Y. Dai, X. D. Li, J. R. Yang, D. J. Srolovitz and Q. S. Zheng, Nat. Commun., 2015, 6, 7853.

8 J. Dai and X. C. Zeng, Angew. Chem., Int. Ed., 2015, 54, 7572-7576.
9 T. Björkman, A. Gulans, A. V. Krasheninnikov and R. M. Nieminen, Phys. Rev. Lett., 2012, 108, 235502.

10 S. Lebègue, J. Harl, T. Gould, J. G. Ángyán, G. Kresse and J. F. Dobson, Phys. Rev. Lett., 2010, 105, 196401.

11 J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, Science, 2011, 331, 568-571.

12 D. M. Tang, D. G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P. M. Ajayan, B. I. Yakobson, P. B. Sorokin, J. Lou and D. Golberg, Nat. Commun., 2014, 5, 3631.

13 K. Weiss and J. M. Phillips, Phys. Rev. B, 1976, 14, 5392-5395.
14 J. D. Fuhr, J. O. Sofo and A. Saul, Phys. Rev. B, 1999, 60, 8343-8347.
15 Y. Xie and P. R. C. Kent, Phys. Rev. B, 2013, 87, 235441.
16 W. K. Li, G. D. Zhou and T. C. W. Mak, Advanced Structural Inorganic Chemistry. (Oxford university press, 2008).

17 V. I. Bakhmutov, Dihydrogen Bonds. (John Wiley \& Sons, 2008).

