Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Computational Insights into Intriguing Vibration-Induced Pulsing Diradical Character in Perfluoropentacene

Fengying Zhang, Yiwei Feng, Xinyu Song*, Yuxiang Bu

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R.

China

Supporting Information

Contents

- 1. The Diradical Character Spectrum of Pentacene
- 2. The Classification of Ground States for All 102 Vibrational Modes with Positively and Negatively Shifted Distorted Configurations and Representatives of the Corresponding Vibrational Modes
- 3. Relevant Data of All 102 Positively Shifted Configurations Including the distorted Configurations, HOMO-LUMO gaps, Singlet-Triplet Energy gaps, etc.
- 4. Energies of the CS, BS and T States and Corresponding Energy Orders for All Vibrational Modes and the <S²> Values for the Negatively Shifted Distorted Configurations
- 5. The Variational Regularities of the Singlet-Triplet Energy gaps, HOMO-LUMO gaps, <S²> Values and so on, with the Increase of Vibrational Amplitude for Some Representative Diradical Vibrational Modes (Only the Positive Shift Is Considered for a Vibrational Mode)

1. The Diradical Character Spectrum of Pentacene

Figure S1. The diradical character spectrum with respect to the vibrational frequencies characterized by the calculated $\langle S^2 \rangle$ values of the ground states of all vibration-distorted configurations in pentacene. 25 vibrational configurations exhibit diradical character among all 102 shift-positive vibrational modes.

2. The Classification of Ground States for All 102 Vibrational Modes with Positively and Negatively Shifted Distorted Configurations and Representatives of the Corresponding Vibrational Modes

Table S1. All 9 types of the ground states for the negative and positive shifts of the vibrational modes and the representatives of the corresponding vibrational modes. Among them all the diradical vibrations are shown in table.

Negative Shifts	Positive Shifts	Representative Vibrations
(ground state)	(ground state)	(modes)
CS	CS	1,2,3,4,5,6,7,8,9,10
	BS	19,31,35,38,39,41,44,49,52,53,
DS		54,56,57,58,60,62,66,70,77,85
Т	Т	87,89,92,96,100,101,102
	CS	16,29,42,73,76
ВЗ	Т	98
CS	BS	22,45,59,68,81,86,93
CS	Т	83
Т	BS	94
1	CS	99

3. Relevant Data of All 102 Positively Shifted Configurations Including the distorted Configurations, HOMO-LUMO gaps, Singlet-Triplet Energy gaps, etc.

Table S2. All 102 vibration-distorted configurations (positively shifted), HOMO-LUMO gaps of the closed-shell singlet states (H-L gap, eV), T-S gaps between the closed-shell singlet and triplet states ($\Delta E_{(T-CS)} = E_T - E_{CS}$, kcal/mol) and the $\langle S^2 \rangle$ values, spin density distributions (isovalue = 0.004), two singly occupied molecular orbitals (SOMO(α) or SOMO 1, SOMO(β) or SOMO 2) of the broken symmetry open-shell singlet (BS) or triplet (T) states for 38 diradical vibrational modes.

Besides, the shapes of HOMO and LUMO and relevant energies for the vibration-distorted configurations without diradical character are also listed (isovalue = 0.02) (The red data denotes diradical vibrations with BS ground states, and the pink data stands for diradical vibrations with

Modes <s<sup>2></s<sup>	H-L gap T-S gap	Distortion Modes	HOMO or SOMO α (SOMO 1)	LUMO or SOMO β (SOMO 2)	BS or T State Spin density
1 0.00	2.00 19.43	*******	· · · · · · · · · · · · · · · · · · ·	:• ````````````````````````````````````	
2 0.00	2.04 20.50	54 9 494444494944		Ŏ	
3 0.00	2.04 20.26	fağınağanağaş	· · · · · · · · · · · · · · · · · · ·		
4 0.00	1.98 19.07	************	· ** ****	:• ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
5 0.00	2.02 19.94	dasağarağayaş			
6 0.00	1.99 18.87	موموردفه وددهم	· Ø	:• >\$\$\$\$ \$\$\$	
7 0.00	2.02 19.93	***********			
8 0.00	1.99 19.22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

T ground states).

9 0.00	1.99 19.21	************		ĨŊĴŶŶĊŎĬ	
10 0.00	1.93 17.75	dadadağadadag	·•••		
11 0.00	2.02 19.76	Palaasasasaaaaa	····		
12 0.00	1.99 19.37	Sababanasasag		:0)}\$\$\$ \$\$	
13 0.00	2.00 19.62	fatasan ana kag	·		
14 0.00	1.94 17.78	*****	·	:• `?`\$\$\$\$ \$\$	
15 0.00	1.99 19.18	*********		₩	
16 0.00	2.18 23.65	*********		:• ?? ;;;;(•:	
17 0.00	1.99 18.98	*********			
18 0.00	1.99 19.30	Par asa karasan			
19 0.054	1.92 16.63	*********		· ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	؞؞ؚ؋ڔڡٞڕڡٞڔڡٞڕڡٞڕ؋؞ ؋ڔڡڕڣڕڣڕڣڕ؋ڕ؋

20 0.00	2.00 19.57	***********		:));;;();	
21 0.00	2.01 19.59		· • • • • • • • • • • • • • • • • • • •		
22 0.092	1.82 15.41	، در در در در در . به دوه وه وه در در			့ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့ ခဲ့
23 0.00	1.98 18.86	**********		:));;;;;();	
24 0.00	1.98 18.99	و دو دو دو دو دو دو دو دو دو دو د			
25 0.00	2.03 20.26	Matters a state access		:	
26 0.00	1.97 18.65	مې د رو د و د و د و د و د و د و د و د و د و د و			
27 0.00	2.01 19.75	6-03-03-03-03-03-03-03-			
28 0.00	1.96 19.23	*********			
29 0.00	2.17 25.32	**********			
30 0.00	2.02 20.22		······································		

31 0.310	1.70 13.94	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		သို့ကိုလိုလိုလိုလ် သို့ကိုလိုလိုလိုလ် ကိုလိုလိုလိုလိုလ်
32 0.00	2.11 23.86	**************		
33 0.00	2.13 23.85	*********		
34 0.00	1.99 19.08	100000000000000		
35 0.235	1.91 14.95	************		
36 0.00	2.05 21.09	و فر فر فر فر فر فر فر فر فر فر فر فر فر فر فر		
37 0.00	2.08 21.72	*********		
38 0.681	1.52 8.92	ردورو دور دموره		ڔؿۅؿٷؿؿؿ ڔؾۅۑؾ ڔؾۅؾؚڮؾ
39 0.327	1.68 12.12			ႋၟၜၟႜၜ <mark>ၟၜၟၛၟၛၟၛ</mark> ၟၜၟၟႋ ၟၜၟၛၛၟၛၟၛၟၛၟၟၜၟ
40 0.00	1.87 17.07			
41 0.292	1.68 12.95			ႋၟၜၟၣၜၟၯၟၯၟၯၟၭၟၣ ၟၜၟၜၟၯၟၯၟၯၟၯၟၯ

42 0.00	1.94 17.25			Ņġġ ġģo:	
43 0.00	2.08 21.32		· • • • • • • • • • • • • • • • • • • •	૽ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	
44 0.240	1.91 16.75	1999949499994	· ¿ååå ; • • •• <i>•</i> •	· ૽ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
45 0.762	1.38 4.57				ະ ຜູ້ມີຜູ້ເຊີ້າຊີ້າຊີ້າຊີ້າ. . ເຊິ່າຊີ້າຊີ້າຊີ້າຊີ້າຊີ້າ.
46 0.00	1.99 19.96	- 630 CEN CEN CEN CEN CEN - 6			
47 0.00	2.10 22.65	• • • • • • • • • • • • • • • • • • •		૾ૺૢ૽૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	
48 0.00	2.02 19.81			૽ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	
49 1.251	1.22 -0.81	رەرەۋەۋەۋەرە ^{مەر}			. <u></u>
50 0.00	1.90 17.27	مر کر گر گر گر گر گر . رفو در در در در			
51 0.00	1.53 13.41	eseğesegesese	:.		
52 1.449	1.19 3.64	**********	, 6666 6		

53 0.947	1.63 11.59	*********		ŢŢŢŢŢŢŢ
54 0.407	1.73 16.03	*300×0×0×035	X .	
55 0.00	1.76 15.56	18080000303030	X	
56 1.560	1.28 1.56	ىرەرەدودەرەرە	<u>دې وې وې وې</u>	
57 1.170	1.52 4.87	*************		ŔĊŢĊ
58 1.409	1.31 1.89	مەرەرەرە دودودە.		
59 0.642	1.69 8.52			ႋၟ႞ၛၟၛၟၛၟၛၟၯၟၟ ႋၯၛၛၟၛၟၯၟၟ
60 1.121	1.38 -2.41	************		
61 0.00	1.98 20.05			
62 1.478	1.18 -5.81	ىيەر قوقوقوقە م		
63 0.00	1.92 17.27	و هر کر کر کر دو. دو دو دو دو دو		

64 0.00	2.01 18.84	، د د د د د د د د د . • د د د د د د د د د . • د د د د د د د د د			
65 0.00	1.94 17.21	موفر فر فر فر فر فر موفو فوفو فوفو			
66 0.464	1.87 12.15	و فرفر در در در در دود و در در د			ۅ ۅڹ؋ڔ؋ڔ؋ڔٷۑٷؠ ؞ٷۑٷۑٷۑٷۑٷ
67 0.00	2.06 21.29			IJŻŻŚŚ	
68 0.064	1.84 15.67	و در در در دردود. مودو در در در			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
69 0.00	1.97 19.74	ار در در در در در در دو در در در در در د			
70 0.714	1.70 10.57	موهو کردو دو دو. موجو دوه و دوه			းခဲ့ကိုက်ကိုက်ခဲ့ အချိန်ကိုက်ခဲ့သူ ကိုက်ကိုက်ခဲ့သူ
71 0.00	2.01 19.89	ر فرقر فر فرقی . دو فو فو دو فر			
72 0.00	2.00 20.56	3			
73 0.00	1.98 19.75	وقو د وقر دردر مودر دود رود	· • • • • • • • • • • • • • • • • • • •	:•)\$;\$(•:	
74 0.00	1.89 17.43	و دوفر در قرد. مو د و دود و در د		:• >\$\$\$ \$\$\$	

75 0.00	4.96 60.76				
76 0.00	2.05 29.48			مرد رو می و در در . در سرا می و در در . در سرا می و در .	
77 0.160	1.95 15.84				္ ခရိုင္ရရွိ ရွိရွိခဲ့ခဲ့ • ခရိုင္ရရွိ ရွိရဲ႕ခံ • ရ
78 0.00	1.90 17.76	ر قر فر قر فر فر دفر فر فر فر فر فر			
79 0.00	2.02 20.19	ر قر قر قر قر قر قر قر م مەن قر قر قر قر قر قر	·•••••••••••••••••••••••••••••••••••••		
80 0.00	3.16 57.42	، در در در در در در در در در در در در در در در			
81 1.277	1.02 -9.56	3,3,3,3,3,3,3			
82 0.00	1.84 15.55	مودر فر فرور فر مودو فرود و			
83 2.027	1.53 -5.24	در در در درد رد در در در در در	૾૾૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ		
84 0.00	1.87 19.70	و دو فر فر فرد و ه فو دو دو د و د و			
85 1.192	0.87 -20.12				ູ

86 0.970	1.44 -18.87				
87 2.017	0.99 -19.43	23 3 3 5 5 5 3 3 5 5 5 5 5 5 5 5 5 5 5 5	ાર ે છે છે છે .		
88 0.00	1.33 6.10				
89 2.179	1.21 -8.47	• • • • • • • • • • • • • • • • • • •			
90 0.00	2.04 22.10				
91 0.00	1.73 14.11	مر فر فردور فردو . مو فرد و فرد و ف	:::::::::::::::::::::::::::::::::::::::		
92 2.064	0.68 -17.70		ःंंं दंदंः		
93 1.905	0.21 -31.74	*******	:;;;;;;;:		
94 1.066	1.03 -20.82				
95 0.00	1.76 5.70				
96 2.234	1.19 -12.15	و هو هوه و هو هو مو هوه وهو موه		1 18.8 50.	

97 1.179	0.33 -24.90	موفر قرقر قرقو هو . مفرقو مومو مومو		ະສຸດ ຊຶ່ງຊຶ່ງຊຶ່ງຊື່ສູດຊື່ອງ
98 2.037	0.37 -16.56	3,		
99 0.00	1.49 28.78	رد ر فر در در در د در در در در در د در در در در د		
100 2.664	1.03 -27.61	مرفر کر درد ردر . دفر او فرد رد ر د		
101 2.518	0.69 -22.54	مرد ر در در در در م ^و ودو دو در در در		
102 2.336	0.59 -20.58	۰. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۱۹		×

4. Energies of the CS, BS and T States and Corresponding Energy Orders for All Vibrational Modes and the <S²> Values for the Negatively Shifted Distorted Configurations

Table S3. Energies (in a.u.) for the closed-shell singlet (CS), broken-symmetry open-shell singlet (BS) and triplet (T) of all vibration-distorted snapshot configurations (negatively shifted) with diradical character and the corresponding energy orders calculated at the (U)B3LYP/6-31+G (d) level as well as the $\langle S^2 \rangle$ values

Vibration Mode	<s<sup>2></s<sup>	E _(CS)	E _(BS)	E _(T)	Energy Order
16	0.093	-2236.0587115	-2236.0587483	-2236.0332295	$E_{(BS)} < E_{(CS)} < E_{(T)}$
19	0.056	-2236.0178388	-2236.0178523	-2235.9913210	$E_{(BS)} < E_{(CS)} < E_{(T)}$
29	0.194	-2235.9339193	-2235.9340889	-2235.9105490	$E_{(BS)} < E_{(CS)} < E_{(T)}$
31	0.310	-2235.9646018	-2235.9649967	-2235.9423506	$E_{(BS)} < E_{(CS)} < E_{(T)}$
35	0.204	-2235.9419396	-2235.9421752	-2235.9176272	$E_{(BS)} < E_{(CS)} < E_{(T)}$
38	0.680	-2235.9373558	-2235.9398025	-2235.9230974	$E_{(BS)} < E_{(CS)} < E_{(T)}$
39	0.414	-2235.8737291	-2235.8746688	-2235.8564318	$E_{(BS)} < E_{(CS)} < E_{(T)}$
41	0.290	-2235.8602890	-2235.8606736	-2235.8396095	$E_{(BS)} < E_{(CS)} < E_{(T)}$
42	0.407	-2235.8609972	-2235.8618773	-2235.8436951	$E_{(BS)} < E_{(CS)} < E_{(T)}$
44	0.247	-2235.8677095	-2235.8679875	-2235.8412279	$E_{(BS)} < E_{(CS)} < E_{(T)}$
49	1.251	-2235.8205073	-2235.8341252	-2235.8218020	$E_{(BS)} < E_{(T)} < E_{(CS)}$
52	1.446	-2235.7616539	-2235.7738708	-2235.7558414	$E_{(BS)} < E_{(CS)} < E_{(T)}$
53	0.892	-2235.6241825	-2235.6277384	-2235.6043734	$E_{(BS)} < E_{(CS)} < E_{(T)}$
54	0.404	-2235.6675194	-2235.6680748	-2235.6419440	$E_{(BS)} < E_{(CS)} < E_{(T)}$
56	1.560	-2235.7111462	-2235.7259044	-2235.7086514	$E_{(BS)} < E_{(CS)} < E_{(T)}$
57	1.170	-2235.6275310	-2235.6366556	-2235.6197521	$E_{(BS)} < E_{(CS)} < E_{(T)}$
58	1.433	-2235.6800398	-2235.6958019	-2235.6783697	$E_{(BS)} < E_{(CS)} < E_{(T)}$
60	1.120	-2235.5709646	-2235.5836636	-2235.5747826	$E_{(BS)} < E_{(T)} < E_{(CS)}$
62	1.478	-2235.6437316	-2235.6654025	-2235.6530065	$E_{(BS)} < E_{(T)} < E_{(CS)}$
66	0.464	-2235.3644252	-2235.3659261	-2235.3450315	$E_{(BS)} < E_{(CS)} < E_{(T)}$
70	0.799	-2235.1918275	-2235.1990903	-2235.1879950	$E_{(BS)} < E_{(CS)} < E_{(T)}$
73	0.415	-2234.7085533	-2234.7093851	-2234.6897542	$E_{(BS)} < E_{(CS)} < E_{(T)}$
76	0.989	-2233.5375555	-2233.5467974	-2233.5424792	$E_{(BS)} < E_{(T)} < E_{(CS)}$
77	0.217	-2234.4838420	-2234.4841026	-2234.4598057	$E_{(BS)} < E_{(CS)} < E_{(T)}$
85	1.189	-2233.7527860	-2233.7872634	-2233.7828489	$E_{(BS)} < E_{(T)} < E_{(CS)}$
87	2.018	-2232.9982987		-2233.0283197	$E_{(T)} \leq E_{(CS)}$
89	2.013	-2234.0988960	-2234.1106849	-2234.1127363	$E_{(T)} < E_{(BS)} < E_{(CS)}$
92	2.034	-2232.8374505		-2232.8668912	$E_{(T)} \leq E_{(CS)}$
94	2.014	-2233.4746247		-2233.5065568	$E_{(T)} \leq E_{(CS)}$
96	2.538	-2233.1652417		-2233.1859216	$E_{(T)} \le E_{(CS)}$
97	1.188	-2233.2009909	-2233.2416352	-2233.2407263	$E_{(BS)} < E_{(T)} < E_{(CS)}$
98	1.154	-2232.7285707	-2232.7607777	-2232.7563223	$E_{(BS)} < E_{(T)} < E_{(CS)}$
99	2.205	-2234.1181791		-2234.1376367	$E_{(T)} \le E_{(CS)}$
100	2.063	-2232.9260215		-2232.9494256	$E_{(T)} \le E_{(CS)}$
101	2.208	-2230.9497004	-2230.9510112	-2230.9745305	$E_{(T)} < E_{(BS)} < E_{(CS)}$
102	2.050	-2231.0769920	-2231.0797783	-2231.1008283	$E_{(T)} < E_{(BS)} < E_{(CS)}$

Vibration Mode **Energy Order** E_(CS) $\mathbf{E}_{(\mathbf{T})}$ 1 -2236.0864227 -2236.0554072 $E_{(CS)} \leq E_{(T)}$ 2 -2236.0858787 -2236.0531497 $E_{(CS)} \leq E_{(T)}$ 3 -2236.0835590 -2236.0516400 $E_{(CS)} < E_{(T)}$ 4 -2236.0835492 -2236.0531108 $E_{(CS)} \leq E_{(T)}$ 5 -2236.0782406 -2236.0464137 $E_{(CS)} < E_{(T)}$ 6 -2236.0764625 -2236.0463421 $E_{(CS)} \leq E_{(T)}$ 7 -2236.0794254 -2236.0476116 $E_{(CS)} \leq E_{(T)}$ 8 $E_{(CS)} \leq E_{(T)}$ -2236.0741374 -2236.0434549 9 -2236.0734294 -2236.0427241 $E_{(CS)} \leq E_{(T)}$ 10 -2236.0720469 -2236.0438416 $E_{(CS)} < E_{(T)}$ 11 -2236.0583299 -2236.0275405 $E_{(CS)} \leq E_{(T)}$ 12 -2236.0531905 -2236.0223392 $E_{(CS)} \leq E_{(T)}$ 13 $E_{(CS)} \leq E_{(T)}$ -2236.0524247 -2236.0210589 14 -2236.0493336 -2236.0209479 $E_{(CS)} \leq E_{(T)}$ 15 $E_{(CS)} \leq E_{(T)}$ -2236.0493044 -2236.0187701 17 -2236.0423661 -2236.0120683 $E_{(CS)} \leq E_{(T)}$ 18 -2236.0183330 -2235.9863116 $E_{(CS)} \leq E_{(T)}$ 20 $E_{(CS)} \leq E_{(T)}$ -2235.9774284 -2235.9462747 21 -2235.9900945 -2235.9594263 $E_{(CS)} < E_{(T)}$ 22 -2235.8899892 -2235.8522760 $E_{(CS)} \leq E_{(T)}$ 23 $E_{(CS)} \leq E_{(T)}$ -2235.9672789 -2235.9371637 24 -2235.9691179 -2235.9366236 $E_{(CS)} \leq E_{(T)}$ 25 -2235.9479681 -2235.9156115 $E_{(CS)} \leq E_{(T)}$ 26 -2235.9316023 -2235.9004161 $E_{(CS)} < E_{(T)}$ 27 -2235.9506635 -2235.9192380 $E_{(CS)} \leq E_{(T)}$ 28 -2235.9046746 -2235.8730682 $E_{(CS)} \leq E_{(T)}$ 30 -2235.9457601 -2235.9131714 $E_{(CS)} \leq E_{(T)}$ 32 -2235.9452938 -2235.9057925 $E_{(CS)} \leq E_{(T)}$ 33 -2235.9481764 -2235.9094769 $E_{(CS)} \leq E_{(T)}$ 34 -2235.7925457 -2235.7621807 $E_{(CS)} \leq E_{(T)}$ 36 -2235.8983709 -2235.8677738 $E_{(CS)} \leq E_{(T)}$ 37 -2235.9233141 -2235.8886281 $E_{(CS)} \leq E_{(T)}$ 40 -2235.8785237 $E_{(CS)} \leq E_{(T)}$ -2235.8505877 43 -2235.8428441 -2235.8087992 $E_{(CS)} \leq E_{(T)}$

Table S4. Energies (in a.u.) for the closed-shell singlet (CS) and triplet (T) of all vibration-distorted snapshot configurations (negatively shifted) without diradical character and the corresponding energy orders calculated at the (U)B3LYP/6-31+G (d) level

45	-2235.8707889	-2235.8273927	$E_{(CS)} < E_{(T)}$
46	-2235.8120769	-2235.7793411	$E_{(CS)} \leq E_{(T)}$
47	-2235.7751624	-2235.7395817	$E_{(CS)} \leq E_{(T)}$
48	-2235.7810916	-2235.7494019	$E_{(CS)} \leq E_{(T)}$
50	-2235.7376404	-2235.7080472	$E_{(CS)} \leq E_{(T)}$
51	-2235.7219818	-2235.7007928	$E_{(CS)} \leq E_{(T)}$
55	-2235.7129519	-2235.6888249	$E_{(CS)} \leq E_{(T)}$
59	-2235.6419904	-2235.5977611	$E_{(CS)} \leq E_{(T)}$
61	-2235.6196923	-2235.5876222	$E_{(CS)} \leq E_{(T)}$
63	-2235.5347178	-2235.5055120	$E_{(CS)} \leq E_{(T)}$
64	-2235.4824669	-2235.4500160	$E_{(CS)} \leq E_{(T)}$
65	-2235.4670027	-2235.4396057	$E_{(CS)} \leq E_{(T)}$
67	-2235.0401440	-2235.0072025	$E_{(CS)} \leq E_{(T)}$
68	-2235.1261605	-2235.0995616	$E_{(CS)} \leq E_{(T)}$
69	-2235.0679356	-2235.0364242	$E_{(CS)} \leq E_{(T)}$
71	-2234.9117407	-2234.8794008	$E_{(CS)} \leq E_{(T)}$
72	-2234.7861090	-2234.7519159	$E_{(CS)} \leq E_{(T)}$
74	-2234.6215425	-2234.5937091	$E_{(CS)} \leq E_{(T)}$
75	-2234.0378811	-2233.9196596	$E_{(CS)} \leq E_{(T)}$
78	-2234.2044708	-2234.1759915	$E_{(CS)} \leq E_{(T)}$
79	-2234.0160577	-2233.9839837	$E_{(CS)} \leq E_{(T)}$
80	-2234.4135840	-2234.3229206	$E_{(CS)} \leq E_{(T)}$
81	-2233.4161805	-2233.3902387	$E_{(CS)} \leq E_{(T)}$
82	-2234.2092928	-2234.1832225	$E_{(CS)} \leq E_{(T)}$
83	-2234.5025742	-2234.3915990	$E_{(CS)} \leq E_{(T)}$
84	-2233.9544119	-2233.9233609	$E_{(CS)} \leq E_{(T)}$
86	-2234.2556896	-2234.1893516	$E_{(CS)} \leq E_{(T)}$
88	-2234.0513713	-2234.0412450	$E_{(CS)} \leq E_{(T)}$
90	-2233.9959363	-2233.9602172	$E_{(CS)} \leq E_{(T)}$
91	-2233.8417573	-2233.8193457	$E_{(CS)} \leq E_{(T)}$
93	-2233.3213149	-2233.3070040	$E_{(CS)} \leq E_{(T)}$
95	-2233.7189957	-2233.7064755	$E_{(CS)} \leq E_{(T)}$

_

Table S5. Energies (in a.u.) for the closed-shell singlet (CS), broken-symmetry open-shell singlet (BS) and triplet (T) of all vibration-distorted snapshot configurations (positively shifted) with diradical character and the corresponding energy orders calculated at the (U)B3LYP/6-31+G (d) level

Vibration Mode	E _(CS)	E _(BS)	E _(T)	Energy Order
19	-2236.0179779	-2236.0179904	-2235.9914243	$E_{(BS)} < E_{(CS)} < E_{(T)}$
22	-2235.9800319	-2235.9800678	-2235.9554244	$E_{(BS)} < E_{(CS)} < E_{(T)}$
31	-2235.9645959	-2235.9649912	-2235.9423452	$E_{(BS)} < E_{(CS)} < E_{(T)}$
35	-2235.9426840	-2235.9430100	-2235.9188188	$E_{(BS)} < E_{(CS)} < E_{(T)}$
38	-2235.9373110	-2235.9397634	-2235.9230644	$E_{(BS)} < E_{(CS)} < E_{(T)}$
39	-2235.8759631	-2235.8764553	-2235.8566144	$E_{(BS)} < E_{(CS)} < E_{(T)}$
41	-2235.8613566	-2235.8617462	-2235.8406789	$E_{(BS)} < E_{(CS)} < E_{(T)}$
44	-2235.8677822	-2235.8680384	-2235.8410404	$E_{(BS)} < E_{(CS)} < E_{(T)}$
45	-2235.7443919	-2235.7482406	-2235.7370894	$E_{(BS)} < E_{(CS)} < E_{(T)}$
49	-2235.8205109	-2235.8341251	-2235.8218038	$E_{(BS)} < E_{(T)} < E_{(CS)}$
52	-2235.7615232	-2235.7738043	-2235.7557117	$E_{(BS)} < E_{(CS)} < E_{(T)}$
53	-2235.6238359	-2235.6279440	-2235.6053300	$E_{(BS)} < E_{(CS)} < E_{(T)}$
54	-2235.6675170	-2235.6680680	-2235.6419264	$E_{(BS)} < E_{(CS)} < E_{(T)}$
56	-2235.7111448	-2235.7259030	-2235.7086503	$E_{(BS)} < E_{(CS)} < E_{(T)}$
57	-2235.6275232	-2235.6366424	-2235.6197398	$E_{(BS)} < E_{(CS)} < E_{(T)}$
58	-2235.6809858	-2235.6958117	-2235.6779657	$E_{(BS)} < E_{(CS)} < E_{(T)}$
59	-2235.5669988	-2235.5699568	-2235.5533993	$E_{(BS)} < E_{(CS)} < E_{(T)}$
60	-2235.5702997	-2235.5830332	-2235.5741482	$E_{(BS)} < E_{(T)} < E_{(CS)}$
62	-2235.6437319	-2235.6654022	-2235.6530060	$E_{(BS)} < E_{(T)} < E_{(CS)}$
66	-2235.3646946	-2235.3661937	-2235.3452967	$E_{(BS)} < E_{(CS)} < E_{(T)}$
68	-2235.1133869	-2235.1134034	-2235.0883642	$E_{(BS)} < E_{(CS)} < E_{(T)}$
70	-2234.9631020	-2234.9663600	-2234.9462283	$E_{(BS)} < E_{(CS)} < E_{(T)}$
77	-2234.4716661	-2234.4718040	-2234.4463636	$E_{(BS)} < E_{(CS)} < E_{(T)}$
81	-2234.3302731	-2234.3559331	-2234.3455425	$E_{(BS)} < E_{(T)} < E_{(CS)}$
83	-2232.6292038		-2232.6375755	$E_{(T)} \le E_{(CS)}$
85	-2233.8250736	-2233.8612090	-2233.8572007	$E_{(BS)} < E_{(T)} < E_{(CS)}$
86	-2232.5974032	-2232.6295599	-2232.6275351	$E_{(BS)} < E_{(T)} < E_{(CS)}$
87	-2232.9731270		-2233.0041509	$E_{(T)} \leq E_{(CS)}$
89	-2233.7329442		-2233.7464699	$E_{(T)} \leq E_{(CS)}$
92	-2233.1053119		-2233.1335767	$E_{(T)} \le E_{(CS)}$
93	-2232.0708900	-2232.1250919	-2232.1229530	$E_{(BS)} < E_{(T)} < E_{(CS)}$
94	-2233.5721661	-2233.6069229	-2233.6053990	$E_{(BS)} < E_{(T)} < E_{(CS)}$
96	-2233.2093191		-2233.2287213	$E_{(T)} \le E_{(CS)}$
97	-2233.2745687	-2233.3151679	-2233.3143146	$E_{(BS)} < E_{(T)} < E_{(CS)}$
98	-2232.5839151	-2232.5967574	-2232.6103466	$E_{(T)} < E_{(BS)} < E_{(CS)}$
100	-2232.9032211		-2232.9472928	$E_{(T)} \leq E_{(CS)}$

101	-2231.0650107		-2231.1009930	$E_{(T)} \leq E_{(CS)}$
102	-2231.0912443	-2231.1021989	-2231.1240959	$E_{(T)} < E_{(BS)} < E_{(CS)}$

Table S6. Energies (in a.u.) for the closed-shell singlet (CS) and triplet (T) of all vibration-distorted snapshot configurations (positively shifted) without diradical character and the corresponding energy orders calculated at the (U)B3LYP/6-31+G (d) level

Vibration Mode	E _(CS)	E _(T)	Energy Order
1	-2236.0864207	-2236.0554060	$E_{(CS)} \leq E_{(T)}$
2	-2236.0858773	-2236.0531469	$E_{(CS)} \leq E_{(T)}$
3	-2236.0830315	-2236.0506797	$E_{(CS)} \leq E_{(T)}$
4	-2236.0835224	-2236.0530823	$E_{(CS)} \leq E_{(T)}$
5	-2236.0782507	-2236.0464243	$E_{(CS)} \leq E_{(T)}$
6	-2236.0764554	-2236.0463345	$E_{(CS)} \leq E_{(T)}$
7	-2236.0794167	-2236.0476008	$E_{(CS)} \leq E_{(T)}$
8	-2236.0738701	-2236.0431808	$E_{(CS)} \leq E_{(T)}$
9	-2236.0734654	-2236.0427975	$E_{(CS)} \leq E_{(T)}$
10	-2236.0709075	-2236.0425665	$E_{(CS)} \leq E_{(T)}$
11	-2236.0589382	-2236.0273988	$E_{(CS)} \leq E_{(T)}$
12	-2236.0521816	-2236.0212579	$E_{(CS)} \leq E_{(T)}$
13	-2236.0523984	-2236.0210773	$E_{(CS)} \leq E_{(T)}$
14	-2236.0493543	-2236.0209721	$E_{(CS)} \leq E_{(T)}$
15	-2236.0493519	-2236.0187236	$E_{(CS)} \leq E_{(T)}$
16	-2236.0463271	-2236.0085710	$E_{(CS)} \leq E_{(T)}$
17	-2236.0423663	-2236.0120685	$E_{(CS)} \leq E_{(T)}$
18	-2236.0183870	-2235.9875723	$E_{(CS)} \leq E_{(T)}$
20	-2235.9773344	-2235.9460977	$E_{(CS)} \leq E_{(T)}$
21	-2235.9902060	-2235.9589293	$E_{(CS)} \leq E_{(T)}$
23	-2235.9672233	-2235.9371116	$E_{(CS)} \leq E_{(T)}$
24	-2235.9702551	-2235.9399299	$E_{(CS)} \leq E_{(T)}$
25	-2235.9479747	-2235.9156222	$E_{(CS)} \leq E_{(T)}$
26	-2235.9305162	-2235.9007443	$E_{(CS)} \leq E_{(T)}$
27	-2235.9516887	-2235.9201648	$E_{(CS)} \leq E_{(T)}$
28	-2235.9315778	-2235.9008690	$E_{(CS)} \leq E_{(T)}$
29	-2235.9464941	-2235.9060715	$E_{(CS)} \leq E_{(T)}$
30	-2235.9453951	-2235.9131131	$E_{(CS)} \leq E_{(T)}$
32	-2235.9462368	-2235.9081394	$E_{(CS)} \leq E_{(T)}$
33	-2235.9490584	-2235.9109759	$E_{(CS)} \leq E_{(T)}$
34	-2235.7878568	-2235.7573974	$E_{(CS)} \leq E_{(T)}$
36	-2235.8991532	-2235.8654802	$E_{(CS)} \leq E_{(T)}$
37	-2235.9233434	-2235.8886695	$E_{(CS)} \leq E_{(T)}$

40	-2235.8782167	-2235.8509665	$E_{(CS)} < E_{(T)}$
42	-2235.8569553	-2235.8294037	$E_{(CS)} \leq E_{(T)}$
43	-2235.8428632	-2235.8088248	$E_{(CS)} \leq E_{(T)}$
46	-2235.8110071	-2235.7791442	$E_{(CS)} \leq E_{(T)}$
47	-2235.7751310	-2235.7389737	$E_{(CS)} \leq E_{(T)}$
48	-2235.7811592	-2235.7495287	$E_{(CS)} \leq E_{(T)}$
50	-2235.7363180	-2235.7087408	$E_{(CS)} \leq E_{(T)}$
51	-2235.7219881	-2235.7005721	$E_{(CS)} \leq E_{(T)}$
55	-2235.7127299	-2235.6878816	$E_{(CS)} \leq E_{(T)}$
61	-2235.6198165	-2235.5878083	$E_{(CS)} \leq E_{(T)}$
63	-2235.5336404	-2235.5060668	$E_{(CS)} \leq E_{(T)}$
64	-2235.4860404	-2235.4559648	$E_{(CS)} \leq E_{(T)}$
65	-2235.4663516	-2235.4388723	$E_{(CS)} < E_{(T)}$
67	-2235.0271692	-2234.9931845	$E_{(CS)} \leq E_{(T)}$
69	-2235.0679120	-2235.0363931	$E_{(CS)} \leq E_{(T)}$
71	-2234.9249777	-2234.8932245	$E_{(CS)} \leq E_{(T)}$
72	-2234.7815423	-2234.7487187	$E_{(CS)} \leq E_{(T)}$
73	-2234.6289849	-2234.5974527	$E_{(CS)} \leq E_{(T)}$
74	-2234.6215415	-2234.5937140	$E_{(CS)} \leq E_{(T)}$
75	-2234.0393859	-2233.9423859	$E_{(CS)} \leq E_{(T)}$
76	-2234.5133261	-2234.4662582	$E_{(CS)} \leq E_{(T)}$
78	-2234.1821923	-2234.1538314	$E_{(CS)} \leq E_{(T)}$
79	-2234.0240204	-2233.9917853	$E_{(CS)} \leq E_{(T)}$
80	-2234.3943562	-2234.3026921	$E_{(CS)} \leq E_{(T)}$
82	-2234.2235578	-2234.1987258	$E_{(CS)} \leq E_{(T)}$
84	-2233.9609821	-2233.9295385	$E_{(CS)} \leq E_{(T)}$
88	-2234.0382778	-2234.0285330	$E_{(CS)} \leq E_{(T)}$
90	-2233.9894067	-2233.9541177	$E_{(CS)} \leq E_{(T)}$
91	-2233.8375137	-2233.8149858	$E_{(CS)} \leq E_{(T)}$
95	-2233.4246922	-2233.4155916	$E_{(CS)} \leq E_{(T)}$
99	-2231.4646959	-2231.4187417	$E_{(CS)} \leq E_{(T)}$

5. The Variational Regularities of the Singlet-Triplet Energy gaps, HOMO-LUMO gaps, <S²> Values and so on, with the Increase of Vibrational Amplitude for Some Representative Diradical Vibrational Modes (Only the Positive Shift Is Considered for a Vibrational Mode)

Table S7. The variational regularities of the HOMO-LUMO gaps of the closed-shell singlet states (H-L gap, eV), T-S gaps between the closed-shell singlet and triplet states ($\Delta E_{(T-CS)} = E_T - E_{CS}$, kcal/mol), T-BS gaps between the broken-symmetry singlet and triplet states ($\Delta E_{(T-BS)} = E_T - E_{BS}$, kcal/mol), and the $\langle S^2 \rangle$ values with the increase of vibrational amplitude for diradical perturbations in some typical diradical vibrational modes (positively shifted). Two SOMOs and spin densities of the BS or T (only vibrational modes 92 and 98) states for diradical perturbations not inducing diradical character are also listed.

Modes <s<sup>2></s<sup>	H-L gap T-S gap T-BSgap	Distortion Modes	HOMO or SOMO α (SOMO 1)	LUMO or SOMO β (SOMO 2)	BS or T State Spin density
19-1 0.00	2.01 19.76	********			
19-2 0.00	2.01 19.65	**********			
19-3 0.00	2.00 19.48				
19-4 0.00	2.00 19.27		· · · · · · · · · · · · · · · · · · ·		

19-5	1.00				
0.00	1.99 18.99				
19-6	1 09				
0.00	1.98	ەرەرەت ئەرەپۇرەت			
19-7	1.97		• • • •		
0.00	18.26	ەردەدەر ورەدەر	· ? ? ?? ?.		
19-8					
0.00	1.96 17.79	ەرەرەقەر ۋە قەر			
19-9			• • • •		
0.00	1.94 17.25	مون وفرون وفر م	.99 4 96.	:)}};;;;;(():	
19	1.92				
0.054	<mark>16.63</mark> 16.64	ىرودۇد م _ا ردەدر			

22-1 0.00	1.99 19.32		· ? ? ? ??.	
22-2 0.00	1.97 18.84			
22-3 0.00	1.95 18.36	، د د د د د د د د . . د د د د د د د د د	· · · · · · · · · · · · · · · · · · ·	
22-4 0.00	1.93 17.89			

22-5 0.00	1.91 17.43			
22-6 0.00	1.89 16.99			
22-7 0.00	1.87 16.56			
22-8 0.023	1.85 16.16 16.16		· · · · · · · · · · · · · · · · · · ·	
22-9 0.059	1.84 15.77 15.78			ၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟ ႚၟၜၟၟၜၟၜၟၜၟၜၟၜၟၜၟၟၜၟ
22 0.092	1.82 15.41 15.44	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	္ခံခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ ,

31-1 0.00	2.01 19.72	 •••••••••••••••••••••••••••••••••••••••	
31-2 0.00	2.00 19.47	 · · · · · · · · · · · · · · · · · · ·	
31-3 0.00	1.98 19.09	 · ?? ?????	
31-4 0.00	1.95 18.57		

31-5 0.00	1.92 17.95		· Ø Ø Å Å Å Å Å Å Å Å Å Å	
31-6 0.00	1.88 17.24	وفعوودووروفو		
31-7 0.015	1.84 16.47 16.47	ردورودودورودور م		•
31-8 0.107	1.79 15.65 15.68	وەدىرۇناردۇرورۇر		းခိုးခိုးခိုးခိုးခိုး အော့အသူအသွန်း ကို အက္ခ်က္က အက်
31-9 0.206	1.75 14.80 14.91	وفادر ودودر ودر		؞ڿؠڣؿڣؿؿ ڿۑڮۑڮڿ؞
31 0.310	1.70 13.94 14.18	رەدرۇددەر.دەر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	૾ૡ૾ૢૡ૾ઌ૾ઌ૾ઌ૾ ૱ ૡૢઌૢઌૢઌૢઌ૱

45-1 0.00	1.97 18.70		· ```	:• `?}\$\$ \$\$\$(•:	
45-2 0.00	1.92 17.51			:•}}\$\$\$ \$\$\$;	
45-3 0.00	1.87 16.24	و در در در در در در و در در در در در در در در در در در در		:• `?`?\$\$ \$\$\$	
45-4 0.074	1.81 14.88 14.90	, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	· · · · ······························		• ວຸວັວອີງອີງອີງອີງອີງອີງ • ວຸວັວອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງອ

45-5 0.189	1.75 13.43 13.53	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		• <mark></mark>
45-6 0.307	1.68 11.88 12.16	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		္မွားဦးဦးဦးဦး ့ အီးဦးဦးဦးဦးဦး ကို ကို ကို ကို ကို ကို ကို ကို ကို ကို
45-7 0.424	1.61 10.22 10.80	33333333333 33333333333		ະ ເບັດ ເຊັ່າ ເຊ ເຊັ່າ ເຊັ່າ ເຊັ່
45-8 0.541	1.54 8.46 9.47			
45-9 0.654	1.46 6.58 8.19	, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,		္မွမ္မွားခဲ့ကိုက္လဲသို့ ႏွင့္အေနျင့္လာက္လဲသို့ ကိုက္လာက္လာက္လာက္လဲ
45 0.762	1.38 4.57 6.98	, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,		າວ ັງນັ້ງນັ້ງນັ້ງ ນັ້ງຈີງ , ຈີ່ມີຜູ້ນີ້ຜູ້ນີ້ມີກໍ່ລາວ ,

59-1 0.00	1.98 18.83		· ```		
59-2 0.00	1.95 17.82	و قوقوقوقوقوقو و فوقوقوقوقوقوقوقوقوقوقوقوقوقوقوقوقوقوقو	· ```		
59-3 0.001	1.92 16.78 16.78				
59-4 0.109	1.89 15.70 15.73	و فر فر فر فر فرو و فر فر فر فر فرو			•

59-5 0.212	1.86 14.59 14.73			,
59-6 0.310	1.83 13.44 13.76			
59-7 0.402	1.79 12.26 12.84	و فو فو فو فو فو و فو فو فو فو فو فو		
59-8 0.488	1.76 11.05 11.97			
59-9 0.568	1.73 9.80 11.14			
59 0.642	1.69 8.52 10.37	موفو فو فو فوفوه مفوفو فو فو فوق		૰ૢૡ૽ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૡૢૢૢૢૢૢૡૢૢૢૡૢૢૡૢૢૡ

68-1 0.00	2.01 19.71		:• ````````````````````````````````````	
68-2 0.00	2.00 19.55			
68-3 0.00	2.00 19.32	موقو قوقو قوقو م موقو قوقو قوقو		
68-4 0.00	1.98 19.03	، د د د د د د د و د و . . د و د و د و د و د و د و		

68-5 0.00	1.97 18.67		ંગ્રેકુંડુંડ્ ં.	
68-6 0.00	1.95 18.23			
68-7 0.00	1.93 17.72			
68-8 0.00	1.90 17.13	ې و و و و و و و و و و و و و و و و و و و		
68-9 0.00	1.87 16.45	و فر فر فر فر فر و و فر فر فر فر فر فر		
68 0.064	1.84 15.67 15.68	مر فر فر فرفو م مودو فر فر فرق		• ૢ ૽૱૱૱૱૱ • ૢ ૽૱૱૱૱૱ • ૱ ૱૱૱૱

77-1 0.00	2.02 19.84			
77-2 0.00	2.02 19.85			
77-3 0.00	2.02 19.81	م فر فر فر فر فر م فر فر فر فر فر م فر فر فر فر	•••••••••••••••••••••••••••••••••••••••	
77-4 0.00	2.02 19.70	موقو قوقو قوقو موقو موقو قوقو قوقو		

77-5 0.00	2.03 19.50	مې نو نو نو نو نو د و. مو د و نو نو نو د و د و		
77-6 0.00	2.02 19.19	مو قو قو قو قو قو مقو قو قو قو قو		
77-7 0.00	2.02 18.72		:• ````````````````````````````````````	
77-8 0.00	2.00 18.04	مرفن فرفر فرفوه مغو فرفر فرفر		
77-9 0.052	1.98 17.11 17.12	موقع قوقو قوقو موقع فوقو قوقو		,
77 0.160	1.95 15.85 15.94	مې کې کې کې کې کې د مې کې		းခိုးမ်ိဳးမိုးခိုးခဲ့ အောင်းရေးကို အောင်းရေး ကို ကို ကို ကို ကို ကို ကို ကို ကို ကို

81-1 0.00	1.96 18.13		· · · · · · · · · · · · · · · · · · · 	`````````````````````````````````````	
81-2 0.080	1.90 16.27 16.29	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	· ØØØØ · ØØ7Ø <i>Ø</i> .		, , , , , , , , , , , , , , , , , , ,
81-3 0.277	1.83 14.20 14.44	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	·		, , , , , , , , , , , , , , , , , , ,
81-4 0.463	1.75 11.87 12.66				ႋၣၜ <mark>ၟၛၟၛၟၛ</mark> ၟၛၣၜၣႋ ၜၯၟၛၟၯၟၛၟၯၟၜၣ

81-5 0.637	1.66 9.25 10.97	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		ۥۑٷۑ ۊ۫ۑۊ ۑٷۣۑ ؞ٷۑٷۣؠٷۣۑٷۣۑٷ؞
81-6 0.795	1.56 6.31 9.45	,3 ²		૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
81-7 0.938	1.45 3.00 8.16			
81-8 1.064	1.32 -0.72 7.17	3,		
81-9 1.176	1.18 -4.89 6.58	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		
81	1.02 -9.56 6.51	, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		းသို့ကိုက်ခံခံ လိုက်ကိုက်ခံခဲ့သူ ကိုက်ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့ကိုက်ခဲ့က

92-1 0.00	2.00 19.55		· · · · · · · · · · · · · · · · · · · 		
92-2 0.00	1.98 18.98		•••••••••••••••••••••••••••••••••••••••		
92-3 0.00	1.94 18.13		· ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
92-4 0.00	1.90 17.06	و فر فر فر فر فر فر فر فر فر فر فر	· , , , , , , , , , , , , , , , , , , ,		

92-5 0.00	1.85 15.84	مر در در در در در ره ره ره ره ره ره ر		
92-6 0.251	1.33 14.57 14.75	مر فر فر فر فر فر مر فر فر فر فر فر		ຸ ວັງອີງອີງອີງວັງ ວັງ ູ ວັງວັງອີງອີງອີງອີງອີງ
92-7 0.362	0.59 10.07 10.46	م ٿوڻو ٿو ٿو ٿو ۽ رور ور ور ٿو ٿو ٿو		ູ ອັງອີງອັງອັງ ອັງວ່າ
92-8 2.031	0.60 -2.52 -2.37	مر کر کر کر کر کر د مربع مرمو مرمو کر د	مر کر کر ڈر فرق مرکز کر ڈر فرق مرکز کر کر کر	
92-9 2.044	0.64 -12.20 -0.50	ىر قرقر قرق ق مەرەر قرق قرق		ာင္ရဲ့ခို ခို ခို ခို
92 2.064	0.68 -17.70	ور کو کر کر کر کر د در دو مرمو مرد و د		

98-1 0.00	1.97 18.52		• ••• ••••••••••••••••••••••••••••••••	૽૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	
98-2 0.198	1.86 14.94 15.06				૾ૢૢૢૢૢૢૢૢૢૢૢૢૺૢૢૢૢૢૢ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
98-3 0.551	1.69 9.87 11.14				ູ ເຊິ່ງ ເ ເຊິ່ງ ເຊິ່ງ ເຊິ່
98-4 0.804	1.51 4.22 7.89	مرد و دو دو دو دو رود و دو دو دو دو			૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ ૢૢૢૢૢૢ

98-5 0.962	1.33 -1.33 5.62			ိုင်္ခရာတို့ကို ကို ကို ကို ကို ကို ကို ကို ကို ကို
98-6 2.030	1.16 -6.40	، وفرقو فوقو فرقو ، وفرقو فوقو وفر		
98-7 2.029	1.00 -10.82			
98-8 2.028	0.87 -14.57	مې د د د د د د د د د د د د د د د د د د د		
98-9 2.027	0.40 -16.95 -16.87	مون فو فو فو ف مو د چه و فو فو مو د چه و فو فو		
98 2.036	0.37 -16.56 -8.51	مون کو کو کو کو مون و کو کو کو		