Supporting Information

Supplementary Information I

Table 1 presents a comparison of our current results on gold dimer i.e Au_2 cluster with the previously published results. The nice agreement of our results with both the experimentally measured and theoretically reported values firmly establishes the accuracy of the computational method and the reliability of atomic pseudo-potentials used in this work.

Table 1. Bond length (BL), binding energy per atom (E_b/n), ionization potential (IP), electron affinity (EA) and vibrational frequency (ω_e) of pure gold dimer (Au₂)

	BL	E _b /n	IP	EA	ω _e
	Å	(in eV)	(in eV)	(in eV)	$(in cm^{-1})$
Current value	2.55	1.09	9.42	2.05	167
Literature	2.47 ⁽⁸¹⁾	1.16 ⁽⁸¹⁾	9.50 ⁽⁸¹⁾	1.94(82)	191(83)
value(Experime					
ntal)					
Literature value	2.52 ⁽⁸⁴⁾ , 2.53 ⁽⁸⁵⁾	1.155(84)	9.31 ⁽⁸⁵⁾ ,	2.05(85)	170 ⁽⁸⁵⁾
(Theoretical)			9.37(86)		

*Ionization potential (IP) was estimated as difference in ground state energies between neutral and cationic clusters at their optimized geometries.

*Electron affinity (EA) was calculated as difference in ground state energies between neural and anionic clusters at their optimized geometries.

Supplementary information II

Figure 1. Optimized geometries of neutral Au $_n$ (n=3-10) clusters. Numbers denote the Au-Au bond length in Å

Figure 2. Optimized geometries of anion Au_n^- (n=3-10) clusters. Numbers indicate the Au-Au bond length in Å

Figure 3. Optimized geometries of cation $\mathrm{Au}_n{}^+$ clusters. Numbers correspond to the Au-Au bond length in Å

Neutral as well as charged Au_n , Au_n^- and Au_n^+ clusters have been systematically studied. All the relevant information is provided in the supplementary information II. It can be clearly perceived in the Figures 1-3 in the Supplementary information II that the geometries of gold clusters remain unchanged upon charging. However, a marginal variation in the bond lengths has been observed between the neutral, anionic and cationic Au_n clusters. Therefore, we have considered neutral Au_n clusters only for the adsorption of C_2H_2 and HCN upon it.

Supplementary information III

Natural Population analysis of Au₄, Au₄-C₂H₂, Au₄C₂H₂-HCN and Au₈, Au₈C₂H₂, Au₈-C₂H₂-HCN. Numbers in parenthesis represent charges on the corresponding atoms.

Supplementary information IV

Density of states (DOS) plots of Au_n, C_2H_2/Au_n and HCN/Au_n-C_2H_2 (n = 4, 8)

Supplementary Information V

Table. Natural electronic configuration based on DFT calculations at GGA-PW91 level for C, H and N in free and adsorbed acetylene and HCN molecules.

Cluster	Atom	Natural Charge	Natural Electronic Configuration	Natural Charge on Acetylene
C ₂ H ₂	C C H	-0.22758 -0.22758 0.22758	[core] 2S(1.03) 2p(3.19) [core] 2S(1.03) 2p(3.19)	0.00000
	H	0.22758	1S(0.77)	
			1S(0.77)	
HCN	H C N	0.21882 0.07886 -0.29768	1S(0.78) [core] 2S(0.99) 2p(2.90) 3S(0.01) 4p(0.01)	0.00000
		[core] 2S(1.61) 2p(3.67) 3S(0.01) 3d(0.01)		
Au ₄	Au	0.12230	[core] 6S(0.73) 5d(9.93) 6p(0.22)	0.00000
	Au	-0.12261	[core] 6S(1.22) 5d(9.87) 6p(0.03)	
	Au	-0.12261	[core] 6S(1.22) 5d(9.87) 6p(0.03)	
	Au	0.12293	[core] 6S(0.73) 5d(9.93) 6p(0.22)	
$Au_4C_2H_2$	Au	0.02899	[core] 6S(0.75) 5d(9.67) 6p(0.54)	0.00631
	Au	-0.04849	[core] 6S(1.12) 5d(9.90) 6p(0.02)	
	Au	-0.04844	[core] 6S(1.12) 5d(9.90) 6p(0.02)	
	Au	0.06162	[core] 6S(0.85) 5d(9.89) 6p(0.20)	
	C	-0.26208	[core] $2S(1.05)$ $2p(3.20)$ $4S(0.01)$ $4p(0.01)$	
	C	-0.26205	[core] $2S(1.05)$ $2p(3.20)$ $4S(0.01)$ $4p(0.01)$	
	Н	0.26522	1S(0.73)	

	Н	0.26522	1S(0.73)					
$Au_4C_2H_2$	Au	0.05049	[core]	6S(0.74)	5d(9.65)	6p(0.54)		Charge on
	Au	-0.06049	[core]	6S(1.13)	5d(9.90)	6p(0.03)		0.00227
	Au	-0.05519	[core]	6S(1.13)	5d(9.90)	6p(0.02)		Charge on
	Au	0.04286	[core]	6S(0.87)	5d(9.89)	6p(0.20)		0.02008
	С	-0.28911	[core]	2S(1.04)	2p(3.23)	4p(0.01)		
	С	-0.25360	[core]	2S(1.06)	2p(3.18)	3S(0.01)	4p(0.01)	
	Н	0.26317	1S(0.73	1S(0.73)				
	Н	0.28181	1S(0.71)				
	N	-0.33568	[core]	2S(1.60)	2p(3.72)	4S(0.01)	3d(0.01)	
	C	0.12951	[core]	2S(0.99)	2p(2.86)	3S(0.01)	4p(0.01)	
	Н	0.22625	1S(0.77	<i>(</i>)				