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S1. Analysis of the Electronic Structure of La0.50Sr0.50CoO3 

 We analyzed the electronic structure of La0.50Sr0.50CoO3 (LSC) using Kohn-Sham density 

functional theory (KS-DFT)1,2 calculations. Unlike many of the SOFC materials we have 

investigated (e.g., LSCF, La0.50Sr0.50Co0.25Fe0.75O3, from the main article text), LSC is metallic.3 We 

performed traditional DFT calculations on LSC within the generalized gradient approximation 

(GGA) to electron exchange and correlation (XC).4 Since many transition metal (TM) oxides of 

this form require the DFT+U method5 to correct for spurious self-interaction errors,6,7 we also 

analyzed LSC using DFT+U calculations. Our goal is to determine which method gives a better 

description of the electronic structure of LSC. 

 Since metallic LSC is different than the semiconducting LSCF encountered in the main 

text, we will provide computational details for our analysis. The calculations were performed 

with the 2 × 2 × 2 supercell (pseudocubic, figure S1) of the cubic perovskite structure. For 

simplicity, we restrict our discussion to the cell with an isotropic distribution of La/Sr ions as 

depicted in figure S1. We employed the Vienna Ab initio Simulation Package (VASP) version 
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5.2.2 for our spin-polarized DFT and DFT+U calculations.8–10 The DFT+U calculations were 

performed with the rotationally invariant formulation of Dudarev et al.11 with Ueff = U-J = 4 eV 

for the Co 3d orbitals. This value of Ueff was derived from electrostatically embedded 

unrestricted Hartree-Fock calculations for Co3+ in LaCoO3.6 We employed the XC functional of 

Perdew, Burke, and Ernzerhof (PBE).4 The pseudocubic structures were optimized by allowing 

the cell volume to change and the nuclei to find their lowest energy arrangement, subject to 

the constraint that the cell remained cubic. The structures were considered converged when 

the external pressure was below 0.05 kBar and the force on each nucleus was below 0.03 eV/Å. 

Integration over the first Brillouin zone was performed with first-order Methfessel-Paxton12 

smearing (σ = 0.20 eV) during structural relaxations and the tetrahedron method with Blöchl 

corrections13 for single point calculations thereafter. The electronic entropy was below 5 meV/ 

f.u. during the relaxations. A 4 × 4 × 4 Monkhorst-Pack k-point mesh was employed.14 The 

planewave kinetic energy cut-off was set at 750 eV. These parameters ensured that the total 

energy was converged to 5 meV/f.u. The projector augmented-wave (PAW) method15 was 

employed to represent the interactions between the valence electrons and the nuclei plus core 

electrons. The PAW potentials were taken from the VASP library16 and were as follows: Co 

(4s23d7), La (5s25p66s25d 1), Sr_sv (4s24p65s2),a and ‘regular’ O (2s22p4). Bader charge analysis 

was performed using the code from Prof. Graeme Henkelman’s group at the University of 

Texas.17–19 

 
 
 

                                                      
a The Sr_sv label for the strontium PAW potential indicates that the semi-core electrons (4s and 4p manifolds) are 
explicitly treated as valence electrons in the calculation. 



 
Fig S1 The pseudocubic structure used for modelling LSC. Colour designations: Blue (Co), O 
(red), La (green), and Sr (pink). 
  

 The results of our electronic structure analysis are presented in table S1 and figure S2. 

We find that both computational methods properly predict metallic behavior for LSC; however, 

the DFT+U method gives disparate Co magnetic moments.  

Table S1. Crystal and electronic structure properties of LSC obtained from DFT-GGA and DFT+U 
calculations. Appropriate experimental values are provided for comparison. Equilibrium 
volumes (V0 in Å3/f.u.), pseudocubic lattice constants (apc in Å), Bader charges (qLa, qSr, qCo, and 
qO in e), and Co magnetic moments (µCo in µB) for LSC (xSr= 0.50) in the pseudocubic cell with 
isotropic La/Sr arrangements (figure S1). 

 Experiment DFT-GGA DFT+U 
V0 54.6420 56.6 58.6 
apc 7.59a 7.68 7.77 
qLa ---- 2.10 2.10 
qSr ---- 1.59 1.59 
qCo ---- 1.39 1.53 (×6) 

1.39 (×2) 
qO ---- -1.08 -1.11 ± 0.03 
µCo 1.8 21 1.62-1.64 2.8 (×6) 

2.1 (×2) 
a The pseudocubic lattice constants were derived by doubling the cube-root of the 
equilibrium volume (per formula unit). This gives a lattice constant that can 
properly be compared to our data.  

 



 

The PDOS from the DFT+U calculation is half-metallic with a gap in the β-spin channel. These 

features result from the DFT+U method attempting to force integer occupations in the Co 3d 

manifold. Our data thus show that the +U correction leads to unphysical electron localization in 

LSC. On the other hand, the DFT-GGA calculations perform very well for LSC. The Co magnetic 

moments remain essentially homogeneous, and the PDOS shows that a fully metallic system 

has developed. DFT-GGA values are consistent with experimental measurements of µCo in 

La0.50Sr0.50CoO3, which found a value of 1.8 µB.21 A large peak in the β-spin PDOS at the Fermi 

level agrees with previous DFT-GGA calculations on LSC.21 Based on these results, we will use 

DFT-GGA exclusively in the following discussion of LSC. 



 
Fig S2 DFT-GGA (top) and GGA+U (bottom) PDOS for LSC (xSr=0.50) in the pseudocubic cell with 
isotropic La/Sr arrangements (figure S1).  Positive (negative) values refer to α(β)-spin channels. 
 
 
S2. Analysis of Oxygen Vacancy Formation in La0.50Sr0.50CoO3 
 
 Our analysis of oxygen vacancy (𝑉𝑉𝑂𝑂∙∙) formation in LSC involved re-optimizing the nuclear 

positions after removing a single, neutral oxygen atom. As in the main text, we focus on the 𝑉𝑉𝑂𝑂∙∙ 

formation energy (ΔEf,vac) in order to understand how readily 𝑉𝑉𝑂𝑂∙∙ defects form in LSC. ΔEf,vac is 

calculated according to equation S1 (also equation 2 in the main text). 

∆𝐸𝐸𝑓𝑓,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑣𝑣𝑑𝑑 +
1
2
𝐸𝐸𝑂𝑂2 − 𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑑𝑑  (S1) 

 



In order to avoid spurious vacancy-vacancy interactions, we employ a larger, 80-atom cell 

(figure S3) generated by the special quasirandom structures method. This cell contains a 

distribution of La/Sr ions that mimics the pair correlation functions for first- and second-nearest 

neighbors. We obtain a value of ΔEf,vac = 1.25 eV for an oxygen vacancy in the SQS cell 

surrounded by four La ions.  

 

 
Fig S3 The 80-atom SQS cell with the La/Sr distribution matching first- and second-nearest 
neighbor correlation functions for a perfectly random alloy. The Co and O atoms are omitted so 
that the La/Sr distribution can be clearly seen. 
 
 In order to further analyze the process of 𝑉𝑉𝑂𝑂∙∙ formation in LSC, we report the Bader 

charges with and without the 𝑉𝑉𝑂𝑂∙∙ present. Using equation S2 (also equation 7 from the main 

text), we can quantify the extent to which the Bader analysis assigns the excess electrons left 

behind upon 𝑉𝑉𝑂𝑂∙∙ formation to the oxygen sublattice.  

𝜆𝜆 =  
(𝑁𝑁 − 1)(〈𝑞𝑞𝑂𝑂,𝑛𝑛𝑜𝑜𝑛𝑛𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑𝑣𝑣ℎ𝑑𝑑𝑜𝑜𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑣𝑣〉 − 〈𝑞𝑞𝑂𝑂,𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑𝑣𝑣ℎ𝑑𝑑𝑜𝑜𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑣𝑣〉)

〈𝑞𝑞𝑂𝑂,𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑𝑣𝑣ℎ𝑑𝑑𝑜𝑜𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑣𝑣〉
 (S2) 



In equation S2, λ is the degree of delocalization, N is the number of oxygen ions in the perfect 

supercell, <qO,nonstoichiometric> is the average Bader charge for an oxygen ion in the defective 

supercell, and <qO,stoichiometric> is the average Bader charge for an oxygen ion in the perfect 

supercell. We note that λ shows significant sensitivity to truncation or rounding of the Bader 

charges. Our calculation for λ was done without truncation, thus it is more accurate than the 

value computed by taking our reported Bader charges (rounded to the nearest 0.01 e) and 

substituting them into equation S2. We find that λ = 0.37 for LSC, and we would expect this to 

correspond to a relatively high value for ΔEf,vac.22 In fact, we see a relatively high ΔEf,vac when 

compared with the value we previously reported for the similar compound La0.50Sr0.50FeO3 

(ΔEf,vac = 0.31 eV). The data presented here show how we obtained the λ and ΔEf,vac values for 

LSC found in figure 6 of the main text. 

 
Table S2 Bader charges (qLa, qSr, qCo, and qO in e) for stoichiometric and nonstoichiometric LSC 
obtained from DFT-GGA calculations in the pseudocubic cell with isotropic La/Sr arrangements 
(figure S1). Co* refers to a Co site adjacent to an oxygen vacancy. Uncertainties are plus/minus 
one standard deviation. 
 

 xSr=0.50 
 Without 𝐕𝐕𝐎𝐎∙∙ With 𝐕𝐕𝐎𝐎∙∙ 

qLa 2.09 2.09 
qSr 1.60 1.59 
qCo 1.41 ± 0.01 1.37 ± 0.01 
qCo* ---- 1.27 
qO -1.08 ± 0.01 -1.09 ± 0.02 
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