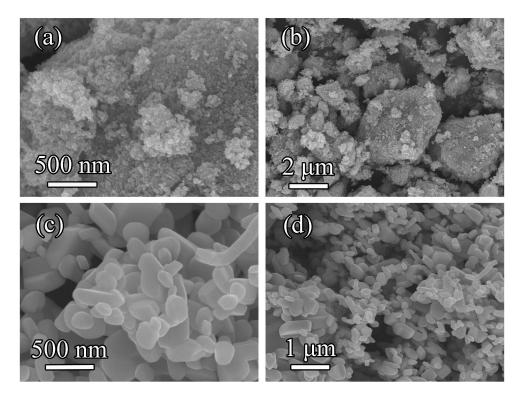
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

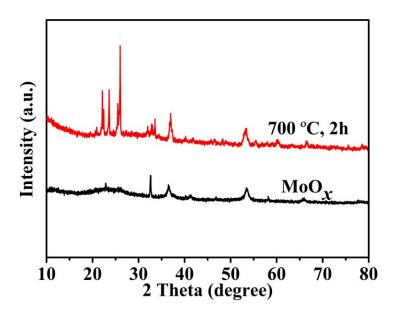
Electronic Supplementary Information (ESI)

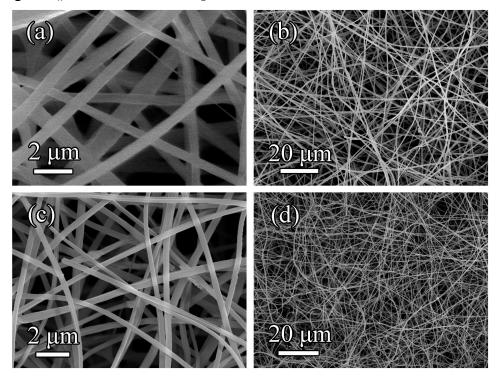
Direct planting of ultrafine $MoO_{2+\delta}$ nanoparticles in carbon nanofibers by electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries

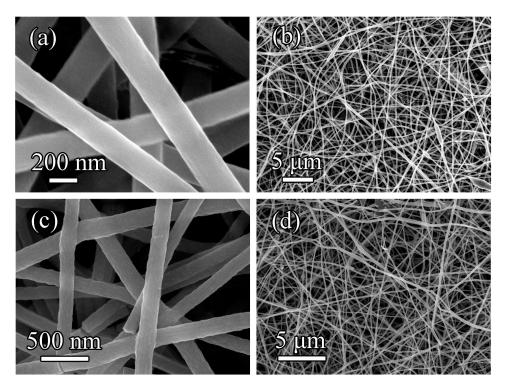
Xiaoxiao Liu, Henghui Xu, Yunhui Huang, Xianluo Hu*


State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Corresponding author: Tel. +86 27 87558245.


E-mail address: huxl@mail.hust.edu.cn


Fig. S1 Photograph of the fresh binder-free C/MoO_{2+\delta} electrode.


Fig. S2 SEM images of (a, b) MoO_x nanoparticles; (c, d) compared particles prepared by heating MoO_x nanoparticles at 700 °C for 2 h in N₂.

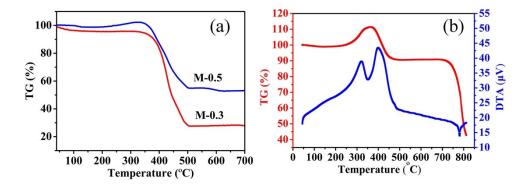

Fig. S3 XRD patterns of MoO_x nanoparticles and compared sample prepared by heating MoO_x at 700 °C for 2 h in N₂.

Fig. S4 M-0.3: SEM images of (a,b) electrospun precursor and (c,d) the obtained nanofibers by treating the precursor at 700 $^{\circ}$ C for 2 h in N₂.

Fig. S5 M-0.5: SEM images of (a,b) electrospun precursor and (c,d) the obtained nanofibers by treating precursor at 700 °C for 2 h in N_2 .

Fig. S6 (a) TG curves of M-0.5 and M-0.3 nanofibers synthesized by treating precursors at 700 °C for 2 h in N₂; (b) TG/DTA curves of the as-prepared C/MoO_{2+ δ} composite nanofibers. (The calculated carbon contents in sample M-0.5 and M-0.3 is 52.5 and 73.2 wt%, respectively). As shown in Fig. S6 (b), the weight change between 200 °C and 600 °C is owing to both the oxidation of MoO_{2+ δ} and the combustion of carbon. The two exothermic peaks between 260-350 °C and 350-500 °C in the DTA profile can be assigned to the oxidation of MoO_{2+ δ} and the combustion of the carbon, respectively. While the endothermic peak between 780-820 °C corresponds to the eliquation and volatilization of MoO₃.

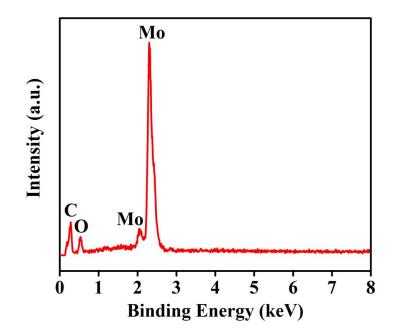
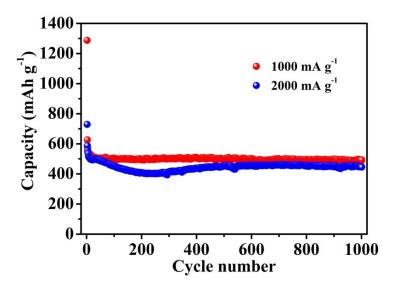



Fig. S7 EDX spectrum of prepared C/MoO_{2+ δ} nanofiber composites.

Fig. S8 Cycling properties of the binder-free C/MoO_{2+ δ} electrode in the potential range of 3–0.01 V vs. Li/Li⁺ at different current densities of 1000 and 2000 mA g⁻¹.

Sample	Current density	Cycle number	Specific capacity	References
	(mA/g)		(mAh/g)	
Carbon coated MoO ₂	50	50	762.7	6
Hierarchical MoO ₂ nanoarchitecture	200	20	719.1	7
MoO ₂ graphene thin film	47.8	100	675.9	9
MoO ₂ /MoC heteronanotubes	200	140	790	10
MoO _{3-x} nanowire arrays	50	20	630	12
MoO ₂ /graphene	500	70	848.6	16
MoO ₂ /C	50	350	734	18
Carbon coated MoO ₂	100	30	617.2	19
nanobelts				
rGO wrapped MoO ₂ porous nanobelts	5000	1900	420	20
MoO ₂ /C nanosheets	500	100	1051	21
3D C/MoO _{2+δ} networks	200 2000	250 1000	876.9 447.9	Current work

Table S1. Comparison of battery performance of MoO_x/C as anode in Li-ion batteries

The references are from the main text.