Electronic Supplementary Information

Two-Dimensional Stanane: Strain-Tunable Electronic Structure,

High Carrier Mobility, and Pronounced Light Adsorption

Xiuhong Liu, Yu Wang, Feng Li, Yafei Li*

College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.

To whom correspondence should be addressed. Email: liyafei.abc@gmail.com (YL)

Fig. S1 The top and side views of chair, boat, and stirrup forms of stanane monolayer with relative cohesive energies. The respective cell parameters (a, b), lengths of Sn-Sn $(l_{\text{Sn-Sn}})$ and Sn-H $(l_{\text{Sn-H}})$ bonds are also given.

Fig. S2 Band structure of stanane computed at PBE+SOC level.

Fig. S3 Band structures of stanane (a) bilayer, (b) trilayer, and (c) four-layer computed at HSE06 level.

Fig. S4 Band structure of stanane monolayer in the rectangle supercell.

Fig. S5 Phonon band structures of stanane with (a) 5% tensile strain and (b) 3% compress strain.

Fig. S6 Total energy-strain relationship of stanane along x (a) and y (b) directions. Δl refers to the dilation along x or y, while l_0 refers to the lattice constant of a or b at equilibrium geometry.

Fig. S7 Shifts of CBM and VBM under uniaxial strain along *x* and *y* directions for stanane.