Supplementary Information

The equilibrium molecular structures of 2-deoxyribose and fructose by the semiexperimental mixed estimation method and coupled-cluster computations

Natalja Vogt^{a,b,*}, Jean Demaison^a, Emilio J. Cocinero^c, Patricia Écija^c, Alberto Lesarri^d, Heinz Dieter Rudolph^a, JürgenVogt^a

^aSection of Chemical Information Systems, Faculty of Sciences, University of Ulm, 89069 Ulm, Germany ^bDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia ^cDepartamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), 48080 Bilbao, Spain ^dDepartamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain *Corresponding author. E-mail address: natalja.vogt@uni-ulm.de

J'	Ka'	Kc'	J''	Ka"	Kc''	v_{obs}	$v_{obs} - v_{calc}$
5	2	3	4	1	3	9097.689	0.001
4	4	0	3	3	0	10846.481	0.000
3	3	1	2	2	1	7957.144	-0.001
6	2	4	5	1	4	10656.749	0.000
4	2	3	3	1	3	8276.063	0.000
3	3	0	2	2	0	7933.932	0.002
3	2	1	2	1	1	6297.825	0.004
4	2	2	3	1	2	7653.897	0.000
4	3	2	3	2	2	9378.194	0.001
4	3	1	3	2	1	9271.084	0.000
5	3	2	4	2	2	10557.744	0.000
6	3	3	5	2	3	11811.065	0.001
5	4	1	4	3	1	12221.652	0.000
4	4	1	3	3	1	10848.864	0.001
6	4	2	5	3	2	13574.387	0.000
6	4	3	5	3	3	13634.508	-0.002
5	5	0	4	4	0	13749.327	0.000
5	5	1	4	4	1	13749.524	-0.002
6	1	6	5	1	5	7622.944	-0.001
6	0	6	5	0	5	7687.622	0.000

Table S1. Observed rotational transitions of fructose (v_{obs}) and residuals ($v_{obs}-v_{calc}$) of the fit of Table S3 (¹⁸O6 species), all values in MHz.

		Parent	¹³ C1	¹³ C2	¹³ C3	¹³ C4	¹³ C5	¹⁸ O6
A	MHz	2437.82519(13)	2432.6910(11)	2417.5851(11)	2428.91157(33)	2428.0033(29)	2410.4359(26)	2408.8515(21)
В	MHz	1510.728846(86)	1499.57261(13)	1508.36532(13)	1507.072715(39)	1505.32554(45)	1507.65494(30)	1495.28173(15)
С	MHz	1144.979958(82)	1139.153854(80)	1141.809999(90)	1141.768500(27)	1141.29514(20)	1139.73939(23)	1131.440878(75)
Δ_J	kHz	0.1067(10)	0.10540(19)	0.10606(95)	0.10654(27)	0.1064(11)	0.1048(20)	0.10224(12)
Δ_{JK}	kHz	-0.04349(42)	-0.043138(78)	-0.04221(38)	-0.04076(10)	0.3285(70)	0.3196(64)	0.30068(36)
Δ_K	kHz	0.3304(31)	0.33019(59)	0.3214(29)	0.32221(84)	-0.04547(48)	-0.04038(81)	-0.025270(30)
δ_J	kHz	0.01959(19)	0.019109(34)	0.01906(17)	0.019554(51)	0.01945(20)	0.01930(38)	0.018545(22)
δ_{K}	kHz	0.08343(81)	0.08220(14)	0.08150(74)	0.08469(22)	0.08159(86)	0.0823(16)	0.08621(10)

Table S2. Ground state rotational parameters of the isotopologues of deoxyribose ($c-\beta-2$ -deoxy-D-ribopyranose, ${}^{1}C_{4}-1$ conformer)^a.

^a This work, A-reduction, representation I^r.

Table S3. Ground state rotational parameters of the isotopologues of fructose (cc- β -D-fructopyranose, ²C₅ conformer)^{a,b}.

	A / MHz	<i>B</i> / MHz	C/MHz	Δ_J / kHz	Δ_{JK}/kHz	Δ_K / kHZ	δ_J / kHz	δ_{K} kHz
Parent	1 465.277876(82)	770.569989(50)	609.969040(48)	0.01858(16)	0.03115(28)	0.04752(43)	0.003177(28)	0.02417(22)
¹³ C1	1 461.73951(15)	764.21815(11)	606.47487(29)	0.01827(15)	0.02989(25)	0.04871(84)	0.003086(26)	0.02327(19)
¹³ C2	1 465.32193(13)	769.505785(98)	609.30340(25)	0.01855(26)	0.03086(44)	0.04808(69)	0.003172(45)	0.02399(34)
¹³ C3	1 461.35556(11)	770.379640(85)	609.36049(26)	0.01851(19)	0.03130(33)	0.04700(50)	0.003170(34)	0.02420(26)
¹³ C4	1 463.46908(13)	767.830223(93)	608.23584(16)	0.01832(31)	0.03196(54)	0.04610(78)	0.003127(53)	0.02431(41)
¹³ C5	1 460.57051(13)	767.00406(12)	607.07390(17)	0.01846(33)	0.02937(53)	0.04916(88)	0.003204(57)	0.02349(42)
¹³ C6	1 450.301268(80)	769.811572(69)	607.56700(10)	0.01847(19)	0.03018(31)	0.04582(47)	0.003193(33)	0.02404(25)
D_R -C2	1 450.487053(77)	762.129587(66)	607.20816(32)	0.01824(11)	0.02766(17)	0.04806(30)	0.002982(18)	0.02145(13)
D _s -C2	1 454.38676(21)	762.80239(18)	604.4125(10)	0.01796(31)	0.02729(47)	0.04931(85)	0.003065(53)	0.02191(38)
¹⁸ O6	1 450.793946(72)	769.50226(10)	606.801863(90)	0.01832(25)	0.03297(46)	0.04037(56)	0.003156(44)	0.02499(35)

^a This work, A-reduction, representation I^r. ^b For definition of labeling R and S for hydrogen atoms, see Fig. 1.

Method ^a	B3LYP	MP2	MP2	MP2	MP2_AE	MP2	CCSD	CCSD(T)
Basis set	6-311 ^b	cc-pVTZ	6-311 ^b	cc-pwCVTZ	cc-pwCVTZ	cc-pVQZ	cc-pVTZ	cc-pVTZ
C1C2	1.5255	1.5168	1.5177	1.5155	1.5123	1.5150	1.5205	1.5224
C1O6	1.4212	1.4207	1.4181	1.4194	1.4170	1.4177	1.4149	1.4224
C1O1	1.4106	1.4070	1.4054	1.4060	1.4036	1.4050	1.4043	1.4093
C1H1	1.0922	1.0905	1.0913	1.0903	1.0890	1.0897	1.0905	1.0925
C2C3	1.5340	1.5252	1.5252	1.5239	1.5207	1.5229	1.5285	1.5301
C2H2q	1.0886	1.0879	1.0884	1.0875	1.0861	1.0870	1.0883	1.0904
C2H2x	1.0917	1.0906	1.0910	1.0902	1.0888	1.0897	1.0916	1.0939
C3C4	1.5343	1.5238	1.5245	1.5224	1.5193	1.5219	1.5270	1.5290
C3O3	1.4167	1.4158	1.4137	1.4146	1.4122	1.4134	1.4122	1.4177
С3Н3	1.0908	1.0897	1.0906	1.0895	1.0881	1.0891	1.0900	1.0924
C4C5	1.5204	1.5130	1.5141	1.5116	1.5084	1.5113	1.5167	1.5197
C4O4	1.4305	1.4281	1.4248	1.4270	1.4245	1.4250	1.4246	1.4305
C4H4	1.0910	1.0897	1.0906	1.0896	1.0882	1.0892	1.0898	1.0917
C5O6	1.4321	1.4310	1.4289	1.4299	1.4273	1.4283	1.4266	1.4339
C5H5g	1.0883	1.0872	1.0876	1.0869	1.0855	1.0863	1.0877	1.0896
C5H5x	1.0925	1.0909	1.0915	1.0905	1.0891	1.0902	1.0913	1.0935
O3H3	0.9651	0.9664	0.9650	0.9657	0.9649	0.9645	0.9620	0.9658
O4H4	0.9635	0.9655	0.9643	0.9648	0.9640	0.9636	0.9610	0.9649
O1H1	0.9625	0.9635	0.9623	0.9629	0.9620	0.9617	0.9596	0.9629
C2C1O6	111.78	111.64	111.58	111.67	111.66	111.63	111.70	111.59
C2C101	108.23	107 51	107.53	107.50	107.53	107.57	107 79	107.68
C2C1H1	111 01	111 39	111 47	111 39	111 35	111 43	111.03	111 25
01C106	111.53	111.64	111 51	111.64	111.63	111.56	111.50	111.20
01C1H1	103.84	103 76	103 91	103 76	103 79	103.81	104.09	103.93
H1C101	110.45	110.94	110.89	110.93	110.92	110.89	110 74	110.90
C1C2C3	112.34	111.66	111 50	111.67	111.68	111 73	111.72	112.12
C1C2H2a	109.78	109.84	109.89	109.81	109.82	109.84	109 78	109.84
C1C2H2x	108.13	108.41	108.40	108.42	108.44	108.37	108.35	108.18
C3C2H2a	110 10	110.25	110.22	110.24	110.23	110.19	110.26	109.84
C3C2H2x	109.00	108.76	108.89	108 79	108 79	108.81	108.87	110.20
$H_{2}^{2}C_{2}H_{2}^{2}x$	107.35	107.82	107.85	107.81	107.78	107.80	107.74	108.63
$C^2C^3C^4$	110.29	109.52	109.51	109.55	109.55	109.61	109.69	110.03
03C3C2	111 48	111 27	111 30	111 30	111 31	111 27	111.36	111.16
H3C3C2	109.45	109.77	109.83	109.75	109.73	109.79	109.56	109.62
C4C3O3	110.98	110.48	110.63	110 51	110 51	110.63	110.67	110.44
C4C3H3	108.31	108.97	108.86	108.93	108.90	108.82	108 74	108.74
03C3H3	106.20	106.77	106.65	106.75	106.77	106.65	106.71	106.71
C3C4C5	109.20	100.77	100.05	109.94	109.94	100.03	100.75	100.76
04C4C3	110.19	109.95	109.70	109.54	109.54	109.01	109.09	109.03
H4C4C3	109.27	109.50	109.00	109.55	109.55	109.00	109.75	109.52
C5C4O4	111 57	110.86	110.95	110.90	110.92	111.00	110 98	110.75
C5C4H4	100.06	110.00	110.55	110.50	110.52	110.44	110.90	110.75
04C4H4	105.70	106.40	106.37	106.38	106.41	106.36	106.40	106.46
C4C5C6	105.76	100.40	100.57	100.38	100.41	100.30	110.40	100.40
C4C5H5a	110.00	110 72	110 78	110.74	110.73	110 77	110.07	110 60
C4C5H5y	110.79	110.72	110.78	110.74	110.75	110.//	110.00	110.09
0605452	10.10	110.44	105 70	110.42	110.41	110.50	10.50	110.41
06C5H5y	105.05	103.73	1105.79	105.75	105.60	103.77	100.90	110.79
UUCJIIJX USC5U5	10.43	110.00	100.50	110.39	100.26	110.30	100.01	110.32
C106C5	113.86	117.43	117 /6	109.41	109.30	117 34	112.22	117 30
C100C3	113.00	112.04	112.40	112.0/	112.10	112.34	112.00	112.30

Table S4. DFT and *ab initio* structures of deoxyribose (in Å and degrees)

C3O3H3	106.94	104.80	105.71	104.87	104.96	105.45	105.66	104.98
C4O4H4	108.15	105.83	106.58	105.88	105.98	106.42	106.73	106.02
C1O1H1	108.56	107.18	107.78	107.21	107.31	107.57	107.58	107.21
C3C2C1O6	-50.33	-52.79	-52.76	-52.71	-52.70	-52.47	-52.15	-51.59
O6C1C2H2q	-173.19	-175.42	-175.27	-175.31	-175.30	-175.06	-174.79	-174.47
O6C1C2H2X	69.99	66.99	67.09	67.13	67.17	67.41	67.79	68.17
01C1C2C3	72.87	69.98	69.82	70.06	70.08	70.23	70.69	71.11
O1C1C2H2q	-49.98	-52.65	-52.70	-52.54	-52.52	-52.36	-51.95	-51.77
O1C1C2H2x	-166.80	-170.23	-170.33	-170.09	-170.06	-169.89	-169.38	-169.12
H1C1C2C3	-165.77	-168.28	-168.45	-168.22	-168.21	-168.03	-167.85	-167.17
H1C1C2H2q	71.38	69.09	69.04	69.18	69.19	69.37	69.51	69.95
H1C1C2H2x	-45.44	-48.49	-48.60	-48.37	-48.35	-48.16	-47.92	-47.41
C2C1O6C5	56.83	59.23	59.00	59.14	59.08	58.79	58.65	58.94
01C106C5	-64.49	-61.15	-61.27	-61.24	-61.33	-61.59	-62.04	-61.54
H1C1O6C5	176.57	179.31	179.23	179.23	179.14	178.94	178.53	178.92
C2C1O1H1	175.38	175.91	175.45	176.02	175.98	175.57	176.05	176.33
O6C1O1H1	-61.27	-61.32	-61.92	-61.19	-61.23	-61.69	-61.00	-60.93
H1C1O1H1	53.67	53.89	53.36	54.01	54.00	53.50	54.41	54.40
C1C2C3C4	48.83	50.20	50.65	50.16	50.21	50.26	49.87	48.95
O3C3C2C1	172.59	172.64	173.29	172.67	172.73	172.94	172.72	171.61
H3C3C2C1	-70.23	-69.39	-68.84	-69.39	-69.31	-69.22	-69.43	-70.58
$H_{20}C_{2}C_{3}C_{4}$	171.51	172.60	172.98	172.52	172.57	172.66	172.24	171.62
$H_2qC_2C_3O_3$	-64 74	-64.96	-64 38	-64 98	-64 90	-64.66	-64 91	-65.72
H2qC2C3H3	52.44	53.00	53 48	52.96	53.06	53.18	52.95	52.09
Hx2C2C3C4	-70.99	-69.38	-68.91	-69.46	-69.45	-69.36	-69.76	-70.56
H2xC2C3O3	52.76	53.06	53 73	53.04	53.07	53 32	53.09	52 11
H2xC2C3H3	169.94	171.02	171.60	170.98	171.03	171.16	170.95	169.92
$C^{2}C^{3}C^{4}C^{5}$	-52.23	-53 71	-54 12	-53 70	-53 72	-53 77	-53.25	-52.69
04C4C3C2	71.16	68.32	68.00	68 39	68 40	68.47	69.04	69.15
H4C4C3C2	-173.02	-175 37	-175 64	-175 31	-175 28	-175 18	-174 54	-174 40
03C3C4C5	-176.28	-176.62	-177.16	-176.67	-176 72	-176.83	-176 51	-175 78
03C3C404	-52.88	-54 59	-55.03	-54 58	-54 60	-54 59	-54 21	-53.93
O3C3C4H4	62.00	61 72	61.32	-54.58	61 72	61.76	62 21	62 52
H3C3C4C5	67.52	66.38	65.97	66.36	66.30	66.31	66 55	67.37
H3C3C4O4	-169.08	_171 59	_171 91	-171 55	-171 57	-171.45	-171.16	-170 78
H3C3C4H4	-109.00	-55 28	-55 55	-171.33	-171.37	-171.45	-171.10	-54 34
C2C3O3H3	-80.63	-78.36	-33.33	-78.35	-78.40	-78.40	-78 67	-79.31
C4C3O3H3	-80.05	-78.50	-//./4	-78.55	-78.40	-78.40	-78.07	-79.51
H3C3O3H3	160.23	161.88	162 49	161 91	161.86	161.89	161 79	161 17
C3C4C5O6	57.84	50.88	50 77	50.85	50.82	50 73	50.13	59.54
C3C4C5H5a	174.87	176.28	176.23	176.28	176.31	176.25	175.88	176.03
C3C4C5H5y	64 55	62.35	62.22	62.37	62.42	62.43	63 10	62.62
04C4C506	-04.55	-02.55	-02.52	-02.37	-02.42	-02.43	-03.19	-02.02
04C4C5H5a	-04.74	-01.34	-01.30	-01.43	-01.49	-01.72	-02.42	-01.37
O4C4C5H5q	32.29	176.42	176.22	176.25	176.27	176.12	175.26	176.92
	172.07	170.45	170.35	170.33	170.27	170.12	170.02	170.27
	64.76	-1/9.09	-1/9.55	-1/9.13	-1/9.24	-1/9.45	62.24	-1/9.33
	-04./0	-02.08	-02.00	-02.72	-02.73	-02.91	-05.54	-02.80
$\Pi 4 \cup 4 \cup 3 \Pi 3 X$	22.82 26.07	J8.08	28.20 86.00	58.62 96.04	38.31 94 14	28.40 96 21	57.59 06 15	58.49 05 24
	-00.07	-60.10	-00.09	-80.04	-80.14	-00.31	-00.13	-63.34
	30.39 155.04	35.32	55.52	55.48 155.70	35.39	55.21 155.20	55.50 155.50	35.96
H4C4O4H4	155.94	155.58	155.60	155.70	155.62	155.58	155.52	156.24
C4C5U6CI	-61.12	-62.90	-62.66	-62.84	-62.78	-62.66	-62.38	-63.26
C1O6C5H5q	178.83	177.61	177.78	177.63	177.66	177.72	178.01	177.22

-									
C1O6C5H5x	61.10	59.24	59.30	59.28	59.34	59.35	59.76	58.83	

^a Frozen core, unless otherwise specified. ^b 6-311+G(3df,2pd).

	1 (D2)	1 (D2:	DALLID	
Method	MP2 ^a	$MP2^a$	B3LYP	CCSD ^a
Basis set	cc-pVIZ	6-3110	6-3110	cc-pVIZ
OIHI'	0.9648	0.9633	0.9633	0.9607
C101	1.4221	1.4192	1.4223	1.4180
C2C1	1.5182	1.5198	1.5304	1.5213
H1 _s C1	1.0858	1.0863	1.0870	1.0866
H1 _R C1	1.0904	1.0908	1.0914	1.0911
O6C2	1.4122	1.4094	1.4137	1.4073
H2'O2	0.9698	0.9685	0.9676	0.9640
C3C2	1.5210	1.5238	1.5365	1.5251
O3C3	1.4216	1.4186	1.4220	1.4175
H3'O3	0.9670	0.9658	0.9655	0.9625
H3C3	1.0888	1.0899	1.0897	1.0888
C4C3	1.5183	1.5194	1.5297	1.5221
O4C4	1.4206	1.4180	1.4220	1.4166
H4'O4	0.9655	0 9643	0 9639	0 9609
H4C4	1 0950	1 0961	1 0959	1 0949
$02C^2$	1 4118	1 4093	1 4145	1 4084
C6O6	1 / 267	1.1075	1.1115	1.1001
H6-C6	1.9267	1.4243	1.4277	1.7227
$H_{6}C_{6}$	1.0000	1.0076	1.0074	1.0005
$\Gamma O_R C O$	1.0921	1.0920	1.0950	1.0923
0505	1.3133	1.3140	1.3203	1.3170
0505	1.4132	1.4151	1.41/3	1.412/
HSUS	0.9000	0.9045	0.9043	0.9014
HSCS	1.0961	1.0969	1.09/5	1.0958
C2CIOIHI	-64./1	-05.83	-68.07	-65.36
HISCIOIHI	1/6.56	1/5.41	1/2.93	1/5./1
HI _R CIOIHI'	56.33	55.10	53.51	55.80
02C2C101	-52.00	-52.27	-50.91	-52.79
H2'O2C2C1	35.31	35.76	35.21	36.40
C3C2C1O1	-170.94	-171.17	-169.99	-171.78
O3C3C2C1	63.87	64.49	65.63	64.33
H3'O3C3C2	46.57	46.62	46.51	46.87
H3C3C2C1	-53.98	-53.29	-51.39	-53.37
C4C3C2C1	-173.18	-172.66	-170.60	-172.48
O4C4C3C2	173.99	173.85	173.19	173.72
H4'O4C4C3	43.29	44.42	44.43	43.89
H4C4C3C2	-64.39	-64.50	-65.88	-64.83
O6C2C1O1	68.43	68.30	69.52	67.63
C6O6C2C1	179.65	179.93	178.08	179.64
H6 _s C6O6C2	-177.60	-177.86	-176.75	-177.46
$H6_{R}C6O6C2$	64.32	63.94	65.68	64.53
C5C6O6C2	-57.93	-58.17	-56.78	-57.72
05C5C606	-66.40	-66.26	-69.27	-67.10
H5'05C5C6	165.22	166 75	166 76	166.13
H5C5C6O6	172.98	173.27	170.92	172 51
C101H1'	105 70	106 50	107 72	106 37
C^2C101	109.70	109.20	110.02	100.37
$H_{1}C_{1}O_{1}$	107.07	107.21	106.02	107.30
H_1	107.12	111 00	111 61	107.21
$\Omega^2 \Omega^2 \Omega^1$	100 40	100.04	100 76	111.02
U20201	107.00	107.74	107./0	107./3
112 0202	104.01	103.00	100.72	103.79

Table S5. DFT and *ab initio* structures of fructose (in Å and degrees)

C3C2C1	113.53	113.25	113.08	113.17
O3C3C2	111.81	111.76	112.04	111.82
H3'O3C3	105.08	105.84	107.06	105.93
H3C3C2	108.65	108.72	108.33	108.50
C4C3C2	110.11	109.99	110.79	110.34
O4C4C3	110.38	110.57	110.78	110.49
H4'O4C4	105.89	106.79	107.80	106.63
H4C4C3	108.73	108.70	108.61	108.71
O6C2C1	104.61	104.71	105.06	104.91
C6O6C2	113.93	114.31	115.93	114.69
H6 _s C6O6	105.60	105.64	105.62	105.81
H6 _R C6O6	110.16	110.14	110.06	110.15
C5C6O6	112.39	112.08	112.67	112.40
O5C5C6	108.98	108.78	109.23	108.95
H5'O5C5	105.24	106.12	107.09	106.00
H5C5C6	108.34	108.53	108.15	108.35

^a Frozen core approximation. ^b 6-311+G(3df,2pd).

atom	$a_{\rm e}^{ m SE}$	$b_{ m e}^{ m SE}$	c_{e}^{SE}	$r_{\rm e}^{\rm SE}$ a
O6 ring	-1.2422(10)	-1.0522(12)	-0.4195(19)	1.68110(70)
C1	-1.45958(89)	0.3398(13)	-0.58329(92)	1.60810(90)
01	-2.1560(14)	0.8846(14)	0.5114(15)	2.3859(13)
H1′	-3.0083(22)	0.4446(35)	0.5610(40)	3.0923(23)
H1	-2.0481(46)	0.4107(39)	-1.4986(27)	2.5709(24)
C2	-0.1533(13)	1.1008(11)	-0.7225(12)	1.3256(10)
H2x	0.3080(38)	0.8208(42)	-1.6702(28)	1.8863(33)
H2q	-0.3515(38)	2.1700(13)	-0.7535(48)	2.3239(18)
C3	0.8155(11)	0.7727(13)	0.4097(13)	1.1958(11)
O3	2.0856(15)	1.3531(10)	0.1843(16)	2.4929(13)
H3′	2.5227(32)	0.7819(36)	-0.4565(35)	2.6802(31)
H3	0.4397(37)	1.1896(46)	1.3438(23)	1.8478(29)
C4	0.9289(11)	-0.7380(13)	0.5619(13)	1.3127(11)
O4	1.6090(24)	-1.2791(15)	-0.5690(16)	2.1328(20)
H4′	0.9425(46)	-1.4310(42)	-1.2464(30)	2.1189(40)
H4	1.5440(39)	-0.9701(38)	1.4309(29)	2.3179(17)
C5	-0.4465(17)	-1.3500(11)	0.7166(15)	1.5923(10)
H5q	-0.3808(42)	-2.4346(13)	0.7532(43)	2.5767(17)
H5x	-0.9215(41)	-0.9878(41)	1.6295(34)	2.1166(32)

Table S6. Cartesian coordinates in the principal axis system for deoxyribose (in Å).

^a Distance from the center of mass.

Atom	$a_{\rm e}^{\rm SE}$	$b_{ m e}^{ m SE}$	c_{e}^{SE}	$r_{\rm e}^{\rm SE}$ a
H1'	-3.1014(35)	-1.3135(27)	-0.3608(46)	3.3874(32)
O1	-3.2958(16)	-0.3726(27)	-0.3188(26)	3.3321(16)
C1	-2.1681(13)	0.2937(26)	-0.8651(14)	2.3527(13)
C2	-0.9647(12)	0.0638(14)	0.0312(19)	0.9673(12)
H1 _s	-2.4036(22)	1.3528(28)	-0.8940(38)	2.8994(18)
$H1_R$	-1.9384(23)	-0.0541(54)	-1.8741(14)	2.6968(19)
O2	-1.2842(32)	0.4178(45)	1.3599(20)	1.9165(26)
H2'	-2.2059(35)	0.1557(62)	1.4876(36)	2.6651(24)
C3	0.2483(14)	0.8935(19)	-0.3594(26)	0.9945(19)
O3	0.0062(32)	2.2834(19)	-0.2082(39)	2.2929(20)
H3'	-0.4009(54)	2.3882(43)	0.6592(49)	2.5098(35)
H3	0.4606(42)	0.7202(44)	-1.4131(31)	1.6516(30)
C4	1.4606(21)	0.4739(29)	0.4531(33)	1.6010(19)
O4	2.6236(21)	1.1421(31)	-0.0100(48)	2.8614(18)
H4'	2.3757(46)	2.0615(28)	-0.1493(69)	3.1490(31)
H4	1.2751(51)	0.7074(75)	1.5066(26)	2.0967(33)
O6	-0.6783(18)	-1.3109(12)	-0.0980(22)	1.4792(14)
C6	0.4324(16)	-1.7637(22)	0.6738(25)	1.9369(19)
H6 _s	0.5505(40)	-2.8167(23)	0.4331(53)	2.9025(21)
$H6_R$	0.2177(49)	-1.6591(55)	1.7395(24)	2.4137(36)
C5	1.7037(16)	-1.0154(19)	0.3352(26)	2.0115(20)
O5	2.0900(29)	-1.3397(31)	-0.9864(28)	2.6714(25)
H5'	2.7559(42)	-0.6902(46)	-1.2353(51)	3.0980(36)
H5	2.4800(27)	-1.3132(53)	1.0494(43)	2.9960(27)

Table S7. Cartesian coordinates in the principal axis system for fructose (in Å).

^a Distance from the center of mass.

		Substitution	L		r_{e}^{SE}	
	a	b		$a_{\rm e}$	$b_{\rm e}$	Ce
C1	2.1672(7)	0.2822(53)	0.8750(17)	-2.1681	0.2937	-0.8651
C2	0.9557(16)	i ^b	i ^b	-0.9647	0.0638	0.0312
C3	0.1781(84)	0.8925(17)	0.3625(41)	0.2483	0.8935	-0.3594
C4	1.4627(10)	0.4744(32)	0.4525(33)	1.4606	0.4739	0.4531
C5	1.7149(9)	1.0090(15)	0.3259(46)	1.7037	-1.0154	0.3352
C6	0.4225(36)	1.7595(9)	0.6897(22)	0.4324	-1.7637	0.6738
O6 ring	0.6685(22)	1.3171(11)	0.0863(174)	-0.6783	-1.3109	-0.0980
H1 _R	1.9305(17)	0.1016(315)	1.8793(17)	-1.9384	-0.0541	-1.8741
H1s	2.4102(13)	1.3357(24)	0.9165(35)	-2.4036	1.3528	-0.8940
o 701		1 1 / 1		1 0	a/1 1 11	

Table S8. Substitution coordinates of fructose compared to the equilibrium Cartesian coordinates (all values in Å).

^a The uncertainties are calculated using Costain's rule: $\delta z = C/|z|$ with C = 0.0015 Å² for heavy atoms and C = 0.0032 Å² for hydrogen atoms.¹

^b Imaginary value.

(1) Rudolph, H. D.; Demaison, J., In *Equilibrium Molecular Structures: From Spectroscopy to Quantum Chemistry*, Demaison, J.; Boggs, J. E.; Császár, A. G., Eds. CRS Press: Boca Raton, 2011; pp 125-158.

Fig. S1. Molecular graph for deoxyribose