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1. Thermodynamic properties  

As described in Section 2.2 of the manuscript, the lattice vibrational contribution to 

the Helmholtz free energy Fvib(V, T) can be usually obtained from either the quasi-

harmonic Debye or the quasi-harmonic phonon approach. In the phonon approach, Fvib(V, 

T) is defined as [1]:  
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where g(ω,V) is the phonon density of states (DOS) at phonon frequency ω and volume V; 

n(ε, V): the electronic density of states; f: the Fermi distribution; εF: the Fermi energy. 
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Based on phonon density of states, the nth moment Debye cutoff frequency and the 

corresponding nth moment Debye temperature can be determined, where the Debye 

cutoff frequencies are given by, 
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Therefore the nth moment Debye temperature can be deduced by 
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In the Debye model, Fvib(V, T) can be wrote as [1]: 
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where ΘD is the Debye temperature; kB the Boltzmann's constant; and the Debye function, 

D(x), is given by 3 3

0
( ) 3 / /[exp( ) 1]

x

D x x z z dz  . To obtain Fvib(V, T), ΘD is the key value which 

can be calculated in terms of the Debye-Grüneisen approximation [2] by:  
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where A is a constant with A = (6π2)1/3ħ/kB; V0 the equilibrium volume at 0 K; B0 the bulk 

modulus; M the average atomic mass; γ the Grüneisen parameter, and s a parameter that 

scales the Debye temperature ΘD.  

Without using the Grüneisen parameter, Wang proposed a method (Debye-Wang 

model [3]) to calculated the Debye temperature [1]:  
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where the parameter λ in Debye-Wang model is an adjustable parameter.  

In order to validate the applicability of Debye model adopted in this work, we 

calculated the Debye temperature using both Debye-Grüneisen and Debye-Wang models. 

Note that two different scaling factors s are performed when using Debye-Grüneisen 

model, with s = 0.617 obtained by Moruzzi [2] from nonmagnetic metals while s = 0.696 

obtained from the Poisson's ratio of pure α-Ti [4, 5]. The results are tabulated in Table S1, 

together with the available measured data by Petry [6], and the DFT data from phonon 

calculations by Mei [7]. The results from the phonon calculation and Debye-Grüneisen 

model with s = 0.617 show an excellent consistent with the measurement (360 K [6]). 

While the Debye-Grüneisen model with s = 0.696 and Debye-Wang model largely 

overestimate the Debye temperature.  

Then we computed the thermodynamic properties (i.e., heat capacity Cp and entropy 

S) of pure α-Ti in terms of both Debye-Grüneisen model with two different scaling factors 

s (i.e., 0.617 and 0.696) and Debye-Wang models, and illustrate the results in Figs. S1-S2. 

For comparison, the theoretical results from phonon calculation [7] and the experimental 

results [8-11] are also presented in Figs. S1-S2. Excellent agreement was achieved 

between computaion and experiments.  

Therefore, for sake of simplicity and efficiency, the Debye-Grüneisen model with s = 

0.617 was used in the present work to benchmark the ΘD value of pure α-Ti from the 

experiment.  
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Table S1 Predicted Debye temperature (ΘD) using both Debye-Grüneisen with two 

different scaling factors s (i.e., 0.617 and 0.696) and Debye-Wang models, together with 

the available experimental data [6] and the DFT data from phonon calculations [7]. 

properties 

Debye-Grüneisen 
 (This work) 

 Debye-Wang 
(This work) 

 Phonon 
(Mei ) 

Expt. 
s = 0.617 s = 0.696   

ΘD (K) 361.4 407.6  372.8  359 360 

 

 

 

Fig. S1. Predicted heat capacity (Cp) of pure α-Ti as a function of temperature using the 

Debye-Grüneisen [1] (black and green solid lines) and Debye-Wang [1] (red dash lines) 

model, together with the measured data from NIST-JANAF [8], Kothen [9], Kohlhaas [10] 

and Peletski [11], and the DFT data from the quasi-harmonic phonon calculations by Mei 

[7]. 
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Fig. S2. Predicted entropy (S) of pure α-Ti as a function of finite temperatures using the 

Debye-Grüneisen [1] (black and green solid lines) and Debye-Wang [1] (red dash lines) 

model, together with the measured data from NIST-JANAF [8], and the DFT data from the 

quasi-harmonic phonon calculation by Mei [7]. Note that the entropy includes the lattice 

vibrational entropy (Svib) and the thermal electronic contribution entropy (Sele).  

 

 

Table S2 First-principles predictions and experimental results of equilibrium lattice 

parameters (a0, c0, and V0) for various solutes X (Al, V, Nb, Ta, Mo, Zr, and Sn) in dilute α-Ti. 

Solutes a0 (Å) c0 (Å) V0 (Å3/atom) Ref. 

Ti 2.899 4.592 16.705 This work 
 2.951 4.674  Expt. [12] 
 2.899 4.589  Calc. [13] 
Al 2.897 4.589 16.673 This work 
Ta 2.899 4.596 16.722 This work 
Sn 2.900 4.604 16.761 This work 
Nb 2.899 4.597 16.730 This work 
Zr 2.904 4.597 16.794 This work 
V 2.895 4.587 16.647 This work 
Mo 2.895 4.595 16.670 This work 
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2. Minimum energy pathways 

Figure S3 shows the predicted minimum energy pathways (MEP) for vacancy 

migration in pure α-Ti within the basal plane and between the adjacent basal planes using 

five images with the CI-NEB method. An anmalous energy pathway, with energetically 

equivalent double saddle points, is clear presented for MEP within the basal plane, which 

agree with the previous investigation by Shang [13]. The detailed discussion about this 

anmalous energy pathway of pure α-Ti can be seen in Ref. [13]. This anmalous MEP are 

also found for the solute diffusion of alloying elements in dilute α-Ti alloys. The predicted 

MEP for all solutes (i.e., Al, Zr, Sn, V, Ta, Nb, and Mo) diffusing in dilute α-Ti are illustrated 

in Figs. S4-10. Although the differece of migration energies for the double saddle points is 

very minor, it should be noticable that the maximum of them are chose as the migration 

barrier for the calculation of jump frequencies in the 8-frequency model.  

 

 

Fig. S3. Minimum energy pathways (MEP) of pure α-Ti within the basal plane and between 

the adjacent basal planes, together with the other DFT results by Shang [13]. The 

subscripts ''A" and ''B'' represent the solute vacancy exchanges within a basal plane and 
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between the basal planes, respectively, as shown in Fig. 1(b)-(c). Note that the numbers 

(i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the CI-NEB 

method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

 

Fig. S4. Minimum energy pathways (MEP) of solute Al diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 

the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  
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Fig. S5. Minimum energy pathways (MEP) of solute Zr diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 

the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

 

Fig. S6. Minimum energy pathways (MEP) of solute Sn diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 
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the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

 

Fig. S7. Minimum energy pathways (MEP) of solute V diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 

the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  
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Fig. S8. Minimum energy pathways (MEP) of solute Ta diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 

the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

 

Fig. S9. Minimum energy pathways (MEP) of solute Nb diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 
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the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

 

Fig. S10. Minimum energy pathways (MEP) of solute Mo diffusing in dilute α-Ti within the 

basal plane and between the adjacent basal planes. The subscripts ''A" and "B" represent 

the solute vacancy exchange, and the subscripts "a", "b", "c", and "a'", "b'", "c'" represent 

the solvent vacancy exchange, respectively, as shown in Fig. 1(b)-(c). Note that the 

numbers (i.e., 1, 2, 3, 4, and 5) are corresponding to the number of Images adopted in the 

CI-NEB method, while the nmubers 0 and 6 represent the initial (is) and final (FS) states, 

respectively.  

 

3. Covalency and Cophonicity metric  

According to the reports of Cammarata et al. [14, 15], the center mass CM of an 

atomic orbital |n, l, ml, ms> for atom A is defined as   
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Where n, l, ml, and ms represent the quantum number; gA(E) is the contribution of the 

atomic orbital |n, l, ml, ms> of the atom A to the total electronic density of states (eDOS). 

The energy range [E0, E1] in Eq. (8) is chosen in such a way that is encompasses all relevant 

bands participating in the bond. The relative position Cn1l1,n2l2 of the center mass of |n1, l1> 

levels of atom A with respect to the center mass of |n2, l2> levels of atom B is given as  

, | ( , ) ( , )|
A A B B

A B
n l n l A A B BC CM n l CM n l                                                 (9) 

Accroding to the above definition, the relative position of the A levels with respect to the 

B levels is  

, | ( ) ( )|A BC CM A CM B                                                                 (10) 

In this formalism, the greater the value of CA,B, the higher the overlop of the selected 

atomic bands, implying a more covalenct A-B bond in the electron density.  CA,B = 0 would 

indicate the highest covalency achievable for the A-B bond in the geometric configuration 

of the crystal structure.  

To show the relationship between diffusion properties and lattice vibrational features, 

a "cophonicity" descriptor formulated by Cammarata et al [16], based on dynamic 

properties of the solutes X and sovlent Ti atomic species, is adopted in the present work. 

The definition of cophonicity metric is similar to the covalency metric, which is closely 

related with the phonon density of states (pDOS) in the first Brillouim zone. According to 

Ref. [16], the center mass CMA of the partial pDOS [gA(ω)] of an atom A in defined as  
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where ω is the phonon frequency; gA(ω) is the phonon contribution of the atom A to the 

total phonon density of states (pDOS). The intergration interval [ω0, ω1] in Eq. (11) is 

chosen in such a way that is encompasses all pDOS relevant for the selected phonon band. 
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For a generic A-B atomic pair, the relative position Cph(A-B) of the center mass of gA(ω) 

with respect to the center mass of gB(ω) is given as  

( ) A B
phC A B CM CM                                                              (12) 

In this formalism, the smaller the value of |Cph(A-B)|, the higher the mixing of the A 

and B contributions to the phonon frequency band. Cph(A-B) = 0 would indicate the equal 

participation of both A and B atomic species to the formation of phonon states in the 

considered range of frequencies. Note that the more detailed description of mathematical 

implementation of covalency and cophonicity metric can be found in Refs. [14-16]. 

Based on the calculations of electornic density of states (eDOS) and phonon density 

of states (pDOS), the X-Ti bond Covalency metric CX-Ti and Cophonicity metric Cph of the X-

Ti pair for various solutes X (Al, Mo, and Zr) in dilute α-Ti are estimated and listed in Table 

S3.  Note that two nearest neighbor Ti host atoms (i.e., Ti1, Ti2) with the solute atom and 

the vacancy were considered here. Fig. S11 shows the calculated electronic density of 

states (eDOS) for various solutes X (Al, Mo, and Zr) in dilute α-Ti. Fig. S12 presents the 

calculated phonon dispersion curves and the relevant density of states (pDOS) along high-

symmetry directions in the Brillouin zone for various solutes X (Al, Mo, and Zr) in dilute α-

Ti, aided by the PHONOPY software [17]. Note that the substitution of one solute atom 

reduces the symmetries of the system, producing the splitting of those vibrational modes 

that were degenerate in the parent α-Ti structure as seen in Fig. S12. 

 

 

Table S3 Calculated X-Ti Bond Covalency CX, Ti (eV), Cophonicity Cph (THz) of the X-Ti pair 

for various solutes X (Al, Mo, and Zr) in dilute α-Ti. 

 Covalency Metric  Cophonicity Metric 
CM(X) CM(Ti1) CM(Ti2) CX-Ti1 CX-Ti2  CMX CMTi1 CMTi2 Cph1 Cph2  

Al -2.01 -1.29 -1.25 -0.72 -0.76  7.73 5.56 5.34 2.17 2.39 
Mo -2.44 -1.15 -1.14 -1.29 -1.30  3.65 5.76 4.97 -2.11 -1.32 
Zr -2.16 -1.12 -1.13 -1.04 -1.03  4.02 5.42 5.59 -1.40 -1.57 
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Fig. S11. Calculated electronic density of states (eDOS) for various solutes X (Al, Mo, and 

Zr) in dilute α-Ti: (a) X = Al, (b) X = Zr, (c) X = Mo. Note that the Fermi level (Ef) is indicated 

by the dashed vertical line at 0 eV. 
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Fig. S12. Calculated phonon dispersion curves and the relevant density of states (pDOS) 

along high-symmetry directions in the Brillion zone for various solutes X (Al, Mo, and Zr) in 

dilute α-Ti. Note that the high-symmetry points in units of 2π/a are Γ (0, 0, 0), K (1/3, 1/3, 

0), M (1/2, 0, 0), Γ (0, 0, 0), A (0, 0, 1/2), respectively. 
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