ELECTRONIC SUPPLEMENTARY INFORMATION

<u>(ESI)</u>

A tryptophan-containing fluorescent intramolecular complex as designer peptidic proton sensor

V. Haridas,*a Anita Yadav, Sakshi Sharma and Siddharth Pandey*a

^a Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.

* To whom correspondence should be addressed.

E-mail: sipandey@chemistry.iitd.ac.in, haridasv@chemistry.iitd.ac.in

Table of Contents

	Page No.
Data of Compounds 1, 2, and 3	3 - 4
¹ H NMR, ¹³ C NMR, and HRMS of	5 - 9
Compound 1, 2, and 3	
Table S1	10
Figure S1 – Figure S8	11 - 18

Data of Compound 1

Yield: 36 %. Mp: 148 °C.

¹H NMR (DMSO d_6 , 400 MHz): δ 1.19 (s, 9H), 1.30-1.42 (m, 1H), 1.48-1.58 (m, 1H), 1.61 (br s, 1H), 1.70 (br s, 1H), 1.80-1.90 (m, 1H), 2.18-2.30 (m, 2H), 2.50-2.60 (m, 1H), 2.73-2.84 (m, 3H), 2.86-2.96 (m, 3H), 3.88-4.08 (m, 1H), 4.44-4.56 (m, 1H), 4.77-4.90 (m, 2H), 5.02-5.15 (m, 1H), 6.84-6.91 (m, 1H), 6.91-7.00 (m, 1H), 7.04 (s+s, 1H), 7.1-7.28 (m, 1H), 7.39 (d, 1H, J = 8 Hz), 7.94-8.00 (m, 1H), 8.02-8.12 (m, 4H), 8.12-8.24 (m, 5H), 8.61 (d, 1H, J = 8.4 Hz), 10.75 (s, 1H).

¹³C NMR (CDCl₃, 75 MHz): δ 21.12, 24.97. 25.61, 28.09, 28.35, 28.78, 29.67, 29.82, 32.41, 33.97, 41.18, 46.16, 49.12, 49.96, 50.71, 58.12, 58.34, 60.47, 63.16, 79.60, 110.87, 111.04, 118.71, 119.45, 121.96, 122.52, 123.96, 124.79, 124.99, 125.25, 125.78, 127.08, 127.26, 127.47, 127.58, 127.71, 128.26, 129.05, 130.85, 130.91, 131.30, 132.75, 135.97, 155.06, 169.81, 172.59.

IR (KBr): 3422, 2926, 2855, 2364, 1628, 1512, 1453 cm⁻¹.

(HRMS): calcd for $C_{42}H_{45}N_5O_4H$ m/z 684.3544, found m/z 684.3578.

Data of Compound 2

Yield: 50.8 %. Mp: 142 °C.

¹H NMR (CDCl₃, 300 MHz): δ 0.70-1.00 (m, 6H), 1.48 (s, 9H), 1.55-1.81 (m, 4H), 1.91 (s, 2H), 1.93-2.16 (m, 1H), 2.31-2.60 (m, 2H), 2.64-2.84 (m, 2H), 3.05 (br s, 2H), 3.10-3.20 (m, 1H), 3.26-3.40 (m, 1H), 4.20-4.33 (m, 1H), 4.68-4.81 (m, 3H), 5.10-5.30 (m, 2H), 7.90-8.10 (s+m, 4H), 8.10-8.35 (m, 5H), 8.73 (d, 1H, *J* = 9 Hz).

¹³C NMR (CDCl₃, 75 MHz): δ 21.82, 22.79, 24.47, 28.07, 28.36, 28.79, 29.59, 29.93, 32.54, 41.02, 42.14, 46.18, 47.80, 48.67, 49.32, 50.61, 58.00, 58.21, 63.09, 79.45, 123.82, 124.13, 124.63, 124.83, 125.66, 126.96, 127.44, 127.60, 127.93, 128.25, 128.92, 129.14, 130.77, 131.20, 132.22, 132.65, 155.16, 169.63, 173.51.

IR (KBr): 3411, 3368, 2923, 2810, 2362, 2329, 1707, 1631, 1523, 1455, 848, 677, 540 cm⁻¹. (HRMS): calcd for C₃₇H₄₆N₄O₄Na m/z 633.3411, found m/z 633.3429.

Data of Compound 3

Yield: 55 %. Mp: 130 °C.

¹H NMR (CDCl₃, 300 MHz): δ 1.21 (s, 9H), 1.50-1.70 (s+m, 3H), 1.76 (br s, 1H), 1.97 (d, 1H, *J* = 9.6 Hz), 2.41 (d, 1H, *J* = 8.4 Hz), 2.55-2.70 (m, 1H), 2.80-3.10 (m, 4H), 3.10-3.28 (m, 1H), 4.19 (d, 2H, *J* = 13.5 Hz), 5.05-5.36 (m, 2H), 7.95-8.10 (s+m, 3H), 8.10-8.27 (m, 5H), 8.35 (br s, 1H), 8.61 (d, 1H, *J* = 9.3 Hz).

¹³C NMR (CDCl₃, 75 MHz): 28.27, 28.42, 29.51, 32.07, 41.07, 47.02, 49.64, 58.47, 58.71,
63.17, 79.14, 123.76, 124.57, 124.68, 124.80, 124.83, 125.61, 126.87, 127.43, 127.46,
128.13, 128.87, 130.68, 130.74, 131.12, 132.25, 156.43, 169.61.

IR (KBr): 3448, 2973, 2919, 2860, 2805, 1670, 1519 cm⁻¹.

HRMS: Cald for $C_{31}H_{35}N_3O_3H$ m/z 498.2751, found m/z 498.2760.

¹H NMR Spectrum of compound **3**, (CDCl₃, 300 MHz)

HRMS of compound 3

¹³C NMR Spectrum of compound **3**, (CDCl₃, 75 MHz)

¹H NMR Spectrum of compound 1, (DMSO- d_6 , 400 MHz)

 ^{13}C NMR spectrum of compound 1, (CDCl₃, 75 MHz)

¹H NMR Spectrum of compound **2**, (CDCl₃, 300 MHz)

HRMS of compound 2

¹³C NMR spectrum of compound **2**, (CDCl₃, 75 MHz)

References:

 (a) V. Haridas, S. Sadanandan, Y. K. Sharma, S. Chinthalapalli and A. Shandilya, *Tetrahedron Lett.*, 2012, 53, 623–626. (b) V. Haridas, S. Sadanandan, M. V. S. Gopalakrishna, M. B. Bijesh, R. P. Verma, S. Chinthalapalli and A. Shandilya, *Chem. Commun.*, 2013, 49, 10980. (c) S. Sharma, M. V. S. Gopalakrishna, P. Venugopalan, C. H. Suresh and V. Haridas, *Tetrahedron*, 2015, 71, 8302-8306.

Compound	λ _{em} (nm)	$\tau_1(ns)$	$\tau_2(ns)$	τ ₃ (ns)	α1	α_2	α3	χ^2	DW		
	Acetonitrile										
1	376	5.6 1.8	12.6		1.00 0.86	0.14		11.7 1.13	0.19 1.63		
	480	12.4 3.7	11.9		1.00 -0.13	0.87		1.35 1.08	1.49 1.86		
$1 + 3.16 \times 10^{-3} \mathrm{M}$ [H ⁺]	376 1.7	13.6 14.6		0.40	1.00 0.60		1.59	2.75 1.46	0.87		
	480	9.4 1.8	12.8		1.00 0.72	0.28		7.53 1.34	0.32 1.58		
2	376	17.2			1.00			1.56	1.49		
3	376	17.5			1.00			1.41	1.52		
			Ethanol								
1	376	11.5 2.9 1.0	15.9 6.2	18.3	1.00 0.64 0.49	0.36 0.31	0.19	7.72 1.67 1.34	0.34 1.47 1.84		
	480	18.7 13.8 0.8	14.1 8.1	15.9	1.00 -0.49 0.26	0.51 -0.24	0.49	2.60 1.94 1.18	0.89 1.19 1.80		
1 + 3.16×10 ⁻³ M [H ⁺]	376	23.8 2.0 1.2	25.9 6.5	26.7	1.00 0.54 0.51	0.46 0.11	0.38	4.35 1.13 1.06	0.48 1.71 1.84		
	480	16.4 2.6 1.0	21.6 5.1	23.1	1.00 0.72 0.55	0.28 0.27	0.19	8.43 1.30 1.03	0.26 1.51 1.87		
2	376	22.5			1.00			1.15	1.60		
3	376	23.6			1.00			2.15	0.93		

Table S1: Recovered intensity decay parameters for 1, 2, and 3 at 25° C. Excitation was carried out using a 340 nm LED. Errors associated to decay times as $\leq 5\%$.

Figure S1. Normalized fluorescence emission spectra of 1 (10 μ M) at 25°C.

Figure S2. Absorbance spectra (left panels) of **1** at 10 μ M and 50 μ M, respectively, dissolved in ethanol (top panel), 2,2,2-trifluoroethanol (middle panel), and acetonitrile (lowest panel) at 25° C. Corresponding normalized absorbance spectra are presented in the right panels.

Figure S3. Normalized fluorescence emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of **1** at different concentrations dissolved in ethanol at 25°C.

Figure S4. Normalized fluorescence emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of 1 (10 μ M) dissolved in various solvents at 25° C.

Figure S5. Relative and normalized fluorescence emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of 1 (10 μ M) dissolved in ethanol at 25° C.

Figure S6. Fit of excited-state intensity decay data of **1** (10 μ M) in ethanol at 25° C. Residuals are provided below each panel.

Figure S7. Normalized fluorescence emission spectra ($\lambda_{ex} = 340 \text{ nm}$) of **1** (10 µM) in the presence of varying [H⁺] at 25° C. Corresponding I_{complex}/I_{Pyr} as defined by I_{475nm}/I_{376nm} versus [H⁺] are provided in the insets.

Figure S8: HRMS of compound 1 at pH 2.5 after keeping it overnight at room temperature.