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Fig. S1 Transient spectra and time scans of 1 in DCM at 24700 cm-1 excitation. Early spectra are given in blue, 
late spectra in red.
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Fig. S2 Transient spectra and time scans of 2 in DCM at 24700 cm-1 excitation. Early spectra are given in blue, 
late spectra in red.
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Fig. S3 Transient spectra and time scans of 3 in PhCN at 26700 cm-1 excitation. Early spectra are given in blue, 
late spectra in red.
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Fig S4 Evolution associated fs-transient absorption spectra of a) 1 and b) 2 in DCM. The decay times of the 
respective EADS are given in the legend. The samples were pumped at 24700 cm-1.
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Fig. S5 The fluorescence upconversion traces (circles) III, I and the calculated Imag of a) 1 and b) 2 excited at 
24700 cm-1 (405 nm) in DCM. The global fits are shown in all cases as solid lines.

Estimation of Förster energy transfer rate in 1 and 2

Population transfer between neighbouring CT states in 1 and 2 could proceed by Förster resonance energy 
transfer (FRET) theory (eq. S1) which is based on dipolar coupling of transition moments in the weak coupling 
regime.1, 2

kFRET =
9 ∙ 1000ln(10)ΦDκ2J

128π5NAn4τDr6
(S1)

Accordingly, the energy transfer rate  depends on the quantum yield  and lifetime τD of the donor state kFRET ΦD

in absence of the acceptor state, the factor κ describing the mutual orientation of the transition moments of 
the donor and acceptor states, the centre to centre distance r of the two states, the refractive index n of the 
solvent and the overlap integral J. The latter is defined as the integral over the product of the area normalised 

fluorescence intensity of the donor and the extinction coefficient of a single acceptor state (eq S2).I̅fl,D(̃) ε(̃) 
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 J =
∞

∫
- ∞

I̅fl,D(̃)ε(̃)
∂̃

̃4
(S2)

With n(PhCN) = 1.528,   =  0.35 and τD  =  63 ns (of 3 in PhCN), κ  = 1.75 for an angle of 120° between the ΦD

transition moment directions of two neighbouring CT states, rDA = 6.279 Å for the distance between the middle 
points of the C.-B separation (from DFT optimised structures) and J  =  1.110-18 and 3.210-18 dm3 mol-1 cm3 
(calculated for the steady state absorption and emission spectra in PhCN and cyclohexane, all data from3, 
energy transfer time constants of 42 ns and 79 ns were obtained for 1 and 2, respectively (see Table S1).

Table S1: Overlap integrals J of 1 and 2, calculated for PhCN and cyclohexane, and the respective energy 
transfer time constants 1/kFRET = τFRET obtained by eq S1.

J (PhCN)
/dm3 mol-1 cm3

J (cyclohexane)
/dm3 mol-1 cm3

τFRET

(PhCN)
τFRET

(cyclohexane)
1 3.210-18 1.210-15 42 ns 89 ps
2 1.110-18 1.510-15 79 ns 75 ps

Calculation of limiting anisotropy for 1 and 2

To relate the measured anisotropy decay time τa1 to a single dynamic hopping process in 1, we have to solve a 
set of Pauli master equations. The six donor-acceptor pairs have a time dependent probability to be in an 
excited CT state Pi(t) (i = 1 – 6) where one pair (i = 1) is initially excited, the energy can be transferred between 
neighbouring pairs with an uniform rate constant kEN. Each CT state can relax to the ground state with the 
fluorescence time constant τfl (see Fig. S6).

Fig. S6 Energy transfer pathways in HAB 1. 

The following Pauli master differential equations can be set up for each CT state (equation S3).

∂P1(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P1 + kENP2 + kENP6
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∂P2(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P2 + kENP3 + kENP1

∂P3(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P3 + kENP4 + kENP2

∂P4(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P4 + kENP5 + kENP3

∂P5(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P5 + kENP6 + kENP4

∂P6(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P6 + kENP1 + kENP5 (S3)

This system of differential equations can be solved to yield the time dependent probabilities Pi(t) (equation S4)

P1(t) =  
P1(0)

6
e

- t
τfl(1 + 2e

- tkEN + 2e
- 3tkEN + e

- 4tkEN)

P2,6(t) =  
P1(0)

6
e

- t
τfl(1 + e

- tkEN ‒ e
- 3tkEN - e

- 4tkEN)

P3,5(t) =  
P1(0)

6
e

- t
τfl(1 - e

- tkEN ‒ e
- 3tkEN + e

- 4tkEN)

P4(t) =  
P1(0)

6
e

- t
τfl(1 - 2e

- tkEN + 2e
- 3tkEN ‒ e

- 4tkEN) (S4)

The measured anisotropy r(t) can then be obtained by summation of the anisotropy values of each CT energy 
transfer step ri(t) (i = 1 - 6) (with r1,4 = 0.4 for parallel orientation and r2,3,5,6 = -0.05 for 120° orientation) 
weighted by the relative probability of each CT state being excited wi (equation S5). 

 r(t) =  
6

∑
i = 1

riwi(t) with wi(t) =
Pi(t)

6

∑
k = 1

Pk(t)
(S5)

If rotational diffusion is neglected the predicted anisotropy should then decay with equation S6.

 r(t) = 0.1 + 0.3e
- 3tkEN (S6)
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In the case of the symmetric HAB 1 the observed anisotropy decay time constant τa1 ascribed to energy 
transfer is a third of the actual energy transfer time constant τEN = 1/kEN between neighbouring donor-acceptor 
pairs (equation S7).

τa1 =  
τEN

3
=  

1
3kEN

(S7)

In this consideration, it was assumed that energy transfer between donor-acceptor pairs being further apart is 
negligible in contrast to that between neighbouring chromophores. That is because the energy transfer rate 
constant decreases rapidly with the distance between the involved chromophores (see equation S1). 
Furthermore, the derived anisotropy decay can only be observed if the energy transfer (τEN ca. 3 ps in 1 and 2) 
is faster than the fluorescence lifetime (τfl ca. 60 ns) and the rotational diffusion (τa2 ca 350 – 600 ps), which is 
the case for all chromophores 1 – 3. From equation S6, the anisotropy value of 2D delocalisation is expected to 
be 0.1 for 1.

In case of the time dependent anisotropy of 2 (see Fig. S7), four cases have to be treated corresponding to the 
initial population of the four CT states. In the following it is assumed that the population transfer is only 
observed between adjacent CT states. 

Fig. S7 Energy transfer pathways in HAB 2. 

(i) Population of CT state 1:
The following Pauli master differential equations can be set up for each CT state (equation S8).

∂P1(t)

∂(t)
=  - ( 1

τfl
+ kEN)P1 + kENP2

∂P2(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P2 + kENP2 + kENP3 + kENP1

∂P3(t)

∂(t)
=  - ( 1

τfl
+ kEN)P3 + kENP2

(S8)
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CT state 4 is not considered as it is not populated in this case. This system of equations is again solved to 
derive terms for each probability Pi(t) (equation S9)

P1(t) =  
P1(0)

6
e

- t
τfl(2 + e

- 3tkEN + 3e
- tkEN)

P2(t) =  
P1(0)

6
e

- t
τfl(2 ‒ 2e

- 3tkEN)

P3(t) =  
P1(0)

6
e

- t
τfl(2 + e

- 3tkEN ‒ 3e
- tkEN)

(S9)
With eq S5 it follows

 r(t) =  0.1 +  0.225e
- tkEN 

+  0.075e
- 3tkEN

(S10)

(ii) Population of CT state 2:

∂P1(t)

∂(t)
=  - ( 1

τfl
+ kEN)P1 + kENP2

∂P2(t)

∂(t)
=  - ( 1

τfl
+ 2kEN)P2 + kENP3 + kENP1

∂P3(t)

∂(t)
=  - ( 1

τfl
+ kEN)P3 + kENP2

(S11)

CT state 4 is again not considered as it is not populated in this case. The solutions are:

P1(t) =  
P2(0)

6
e

- t
τfl(2 - 2e

- 3tkEN)

P2(t) =  
P2(0)

6
e

- t
τfl(2 + 4e

- 3tkEN)

P3(t) =  
P2(0)

6
e

- t
τfl(2 - 2e

- 3tkEN)
(S12)
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With eq S5 it follows

 r(t) =  0.1 + 0.3e
- 3tkEN

(S13)

(iii) Population of CT state 3:
The same result as in (i) is optained.

(iv) Population of CT state 4:
As there is no adjacent CT state, no energy transfer is possible and hence equation S14 is obtained.

 r(t) =  0.4
(S14)

The overall anisotropy (equation S15) is calculated by averaging the cases (i)-(iv).

 r(t) =  
2(0.1 +  0.225e

- kENt +  0.075e
- 3kENt) +  0.1 +  0.3e

- 3kENt +  0.4

4
 =  0.175 +  0.11e

- kENt +  0.115e
- 3kENt

(S15)

Thus, two time constants are expected for the anisotropy decay of 2 caused by energy transfer. However, as 
these time constants are on the same order of magnitude the observed single time constant may be the 
average of the calculated biexponential decay. Delocalisation of the CT states in 2 leads to a limiting, 
calculated anisotropy of 0.175.
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