Electronic Supplementary Information

Nanoporous Two-Dimensional MoS₂ Membrane for Fast Saline

Solution Purification

Jianlong Kou^{†,‡}, Jun Yao[†], Lili Wu[‡], Xiaoyan Zhou[‡], Hangjun Lu[‡], Fengmin Wu[‡], and Jintu Fan[¶]

[†]State Key Laboratory of Heavy Oil Processing, and School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

*Institute of Condensed Matter Physics, and Zhejiang Province Key Laboratory of

Solid State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China,

[®]Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA

Figure S1. Cumulative water flux through the MoS_2 membrane with both pressure ways of piston (red) and acceleration (blue). As show in the Figure, effect of applying pressure is slight.

Figure S2. Cumulative water flux through the MoS_2 membrane in different charge densities of edge atoms. Due to the pore, charge density of edge atoms may be reduced.^{S1} Charge densities of edge atoms with 1*q*, 0.9*q*, and 0.8*q* are shown in Figure. We found that the charge effect is a slight.

Figure S3. The possible distribution of hydration numbers for Na⁺ (blue triangle) and Cl⁻ (red circle) in the bulk. Solid lines of Na⁺ (blue) and Cl⁻ (red) are fitted by Gaussian probability function, respectively. The average coordination numbers of Na⁺ and Cl⁻ are 5.2 and 7.1, which is consist with data from X-ray diffraction and simulations.^{S2-S7}

References

- [S1] H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, and F. Song. *Nat. Commun.* 2013, 4, 2642.
- [S2] J. L. Kou, X. Y. Zhou, H. J. Lu, F. M. Wu, and J. T. Fan. Nanoscale 2014, 6, 1865-1870.

- [S3] D. L. Bostick and C. L. Brooks, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9260– 9265.
- [S4] M. M. Harding, Acta Crystallogr, Sect. D: Biol. Crystallogr. 2002, 58, 872-874.
- [S5] Q. Shao, L. L. Huang, J. Zhou, L. H. Lu, L. Z. Zhang, X. H. Lu, S. Y. Jiang, K. E. Gubbinse and W. F. Shen, *Phys. Chem. Chem. Phys.* 2008, **10**, 1896.
- [S6] X. J. Gong, J. C. Li, K. Xu, J. F. Wang and H. Yang, J. Am. Chem. Soc. 2010, 132, 1873–1877.
- [S7] Z. Michael, W. James and D. V. Massimiliano, J. Phys.: Condens. Matter 2010, 22, 454126.