Supplementary Information

Valley Polarization and *p-/n*-Type Doping of Monolayer WTe₂ on Top of Fe₃O₄(111)

Yan Song,^a Qian Zhang,^a Wenbo Mi,^{*a} Xiaocha Wang^b

^aTianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354, China

^bTianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384, China

^{*}Author to whom all correspondence should be addressed.

E-mail: <u>miwenbo@tju.edu.cn</u>

Fig. S1. Side views of charge density differences for A2-A6 models. The isosurface values for A2 and A6 models are 2 e/nm³ and for A3-A5 models are 1 e/nm³. Yellow (blue) regions represent net charge gain (loss).

Fig. S2. The orbital-resolved DOS for W, Te, Fe(A)-I, O1-II and O2-II atoms in A4 model, respectively. Fermi energy is indicated by the vertical line and is set to zero.

Fig. S3. The orbital-resolved DOS for W, Te, Fe(A)-I, O1-II and O2-II atoms in A5 model, respectively. Fermi energy is indicated by the vertical line and is set to zero.

Fig. S4. The orbital-resolved DOS for W, Te, Fe(A)-I, O1-II and O2-II atoms in A6 model, respectively. Fermi energy is indicated by the vertical line and is set to zero.