Novel Schiff base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: Experimental and theoretical approach

Sourav Kr. Saha,^{ab} Alokdut Dutta,^c Pritam Ghosh,^a Dipankar Sukul^c and Priyabrata Banerjee*^{ab}

^aSurface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India. E-mail: <u>pr_banerjee@cmeri.res.in</u>; Fax: +91-343-2546 745; Tel: +91-343-6452220 ^bAcademy of Scientific and Innovative Research, CSIR-CMERI Campus, Durgapur 713209, West Bengal, India ^cDepartment of Chemistry, National Institute of Technology, Durgapur 713209, India

Fig. S1 FTIR spectrum of L¹.

Fig. S2 FTIR spectrum of L^2 .

Fig. S5 ESI-MS spectrum of L^2 in methanol.

Fig. S7 Tafel polarization curves for mild steel in 1 M HCl solution in the presence of Schiff bases (L^1 , L^2 and L^3) with varying inhibitor concentration.

Fig. S8 Nyquist impedance diagram for mild steel in 1 M HCl solution in presence of Schiff bases (L^1 , L^2 and L^3) with different inhibitor concentration.

Fig. S9 EIS fitting curve of L³ inhibitor having 1mM concentration.

Fig. S10 Variation of inhibition efficiency obtained from weight loss measurement at 1 mM concentration of three Schiff bases having different immersion time (1-96 hr) towards corrosion of mild steel in 1M HCl.

Atoms	L ¹			L ²			L ³		
	$f_{\rm k}^+$	f _k -	$f_{\rm k}{}^0$	f_{k^+}	∫k [−]	$f_{\rm k}^{0}$	f_{k^+}	f_{k}	$f_{ m k}^{0}$
N (1)	0.016	0.058	0.037	0.078	0.044	0.061			
C (1)	_					-	0.015	0.049	0.032
C (2)	0.033	0.067	0.050	0.085	0.087	0.086	0.026	0.040	0.033
C (3)	0.031	0.050	0.041	0.028	0.053	0.041	0.038	0.031	0.031
C (4)	0.029	0.047	0.038	0.033	0.062	0.048	0.031	0.029	0.030
C (5)	0.038	0.026	0.029	0.030	0.037	0.034	0.025	0.021	0.023
C (6)	0.009	0.024	0.017	0.042	0.022	0.032	0.010	0.041	0.024
C (7)	0.029	0.035	0.032	0.025	0.055	0.040	0.030	0.025	0.028
C (8)	0.007	0.023	0.015	0.054	0.019	0.037	0.011	0.051	0.031
C (9)	0.012	0.034	0.023	0.053	0.033	0.043	0.013	0.036	0.025
C (10)	0.009	0.025	0.017	0.050	0.022	0.036	0.011	0.042	0.027
C (11)	0.059	0.029	0.044	0.030	0.033	0.032	0.063	0.022	0.043
C (12)	0.012	0.034	0.023	0.048	0.034	0.041	0.013	0.036	0.025
C (13)	0.040	0.033	0.036	0.023	0.034	0.029	0.032	0.026	0.029
N (14)	0.014	0.050	0.032	0.094	0.046	0.070	0.016	0.060	0.038
N (15)	0.029	0.079	0.054	0.033	0.100	0.067	0.032	0.048	0.040
N (16)	0.048	0.021	0.035			-	0.049	0.020	0.035
C (16)	_			0.029	0.034	0.032			
O (17)	0.080	0.043	0.062				0.082	0.039	0.060
N (17)	_	-	_	0.050	0.072	0.061	-	_	_
O (18)	0.075	0.045	0.060		-	-	0.077	0.039	0.058
N (19)	0.083	0.022	0.053	_	-	-	0.076	0.025	0.051
O (20)	0.123	0.049	0.086	_	-	-	0.113	0.048	0.081
O (21)	0.117	0.040	0.078	-	-	-	0.108	0.039	0.074
O (22)	-	-	—	_	-	-	0.016	0.062	0.039

Table S1 Calculated Fukui indices of the three Schiff base inhibitors