
Electronic Supplementary Information (ESI) Available

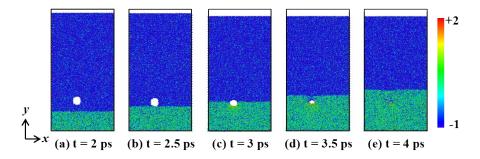
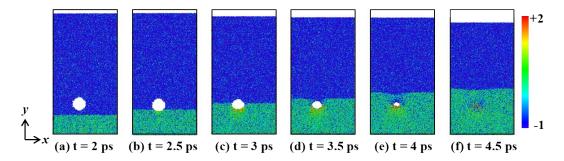
Hot Spot Formation and Chemical Reaction Initiation in Shocked HMX Crystal with a Nanovoid: A Large-Scale Reactive Molecular Dynamics Study

(Tingting Zhou, Jianfeng Lou, Yangeng Zhang, Huajie Song and Fenglei Huang)

Table S1. Bond order cutoff values for various atom pairs. The algorithm of molecule recognition in the fragment analysis uses these values.

	С	Н	О	N
С	0.55	0.40	0.60	0.30
Н		0.55	0.40	0.55
О			0.65	0.40
N				0.55

Figure S1. EOS for β-HMX under hydrostatic compression at T = 300 K. The red fitted circles are the results from this work; the orange open squares are the experimental results from Olinger et al.;⁷⁸ the black open diamonds are the experimental results from Yoo and Cynn;⁷⁹ the blue open up triangles are the experimental results from Gump and Peiris;⁸⁰ the green open down triangles are the theoretical results from Sewell et al.⁸¹ The result from ReaxFF-lg is in excellent agreement with the experimental result from Gump and Peiris⁸⁰ and the theoretical result from Sewell et al.⁸¹ Gump and Peiris⁸⁰ used a relatively pure batch of HMX thrice recrystallized in acetone, with the hope of obtaining the properties of pure materials, making it a good case with which to compare theoretical results for perfect crystal.

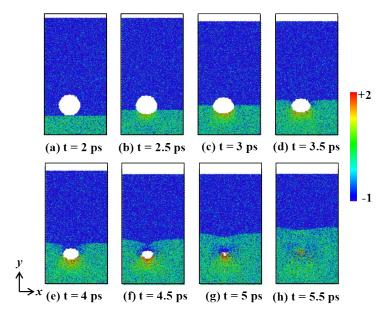
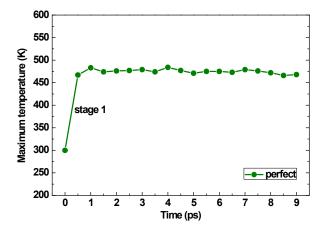
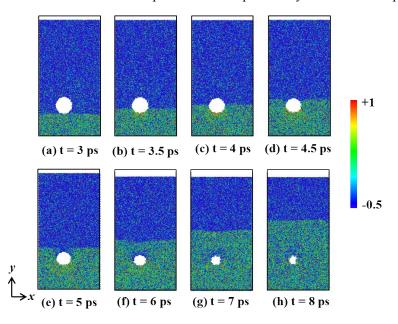
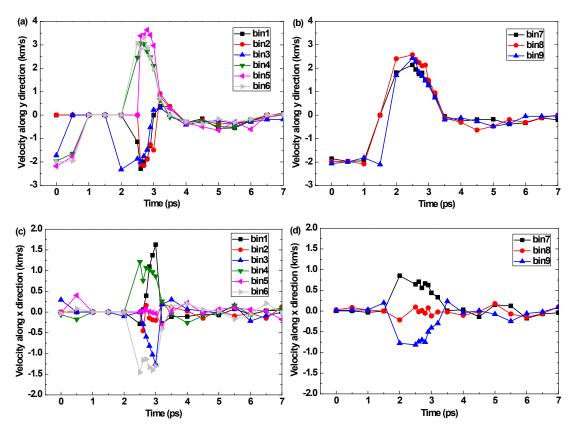
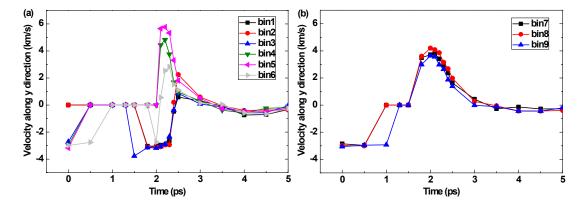

Figure S2. The relation between shock velocity (U_s) and particle velocity (U_p) for perfect single crystal HMX obtained from ReaxFF-MD simulations and shock experiments. ⁸² The line represents the linear fitting to the experimental data: $U_s = (2.901 \pm 0.407) + (2.058 \pm 0.49)U_p$ for $0.59 < U_p < 1.04$ km/s. The density of the HMX crystal is 1.89 g/cm³ for both the MD simulation and the shock experiment. The U_s predicted by ReaxFF is a little higher than but is within the error range of experimental result, indicating good agreement.

Figure S3. The illustrations of shock wave propagation and void collapse during $2 \sim 4$ ps for the case of R = 2 nm and $U_p = 1$ km/s. Atoms are color coded by the magnitude of atom velocity along y direction: duck blue represents -1 km/s, cyan 0 km/s, kelly 1 km/s, and red +2 km/s. The maximal velocity for a few atoms reaches 1.20 km/s.

Figure S4. The illustrations of shock wave propagation and void collapse during $2 \sim 4.5$ ps for the case of R = 3 nm and $U_p = 1$ km/s. Atoms are color coded by the magnitude of atom velocity along y direction: duck blue represents -1 km/s, cyan 0 km/s, kelly 1 km/s, and red +2 km/s. The maximal velocity for a few atoms reaches 1.79 km/s.

Figure S5. The illustrations of shock wave propagation and void collapse during $2 \sim 5.5$ ps for the case of R = 5 nm and $U_p = 1$ km/s. Atoms are color coded by the magnitude of atom velocity along y direction: duck blue represents -1 km/s, cyan 0 km/s, kelly 1 km/s, and red +2 km/s. The maximal velocity for a few atoms reaches 2.92 km/s.


Figure S6. The time evolution of the maximum temperature for the perfect crystal under an impact velocity of 1 km/s

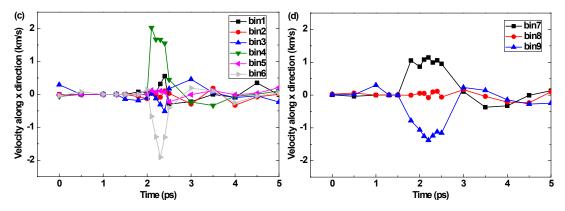


Figure S7. The illustrations of shock wave propagation and void collapse for the case of R = 4 nm and $U_p = 0.5$ km/s. Atoms are color coded by the magnitude of atom velocity along y direction: duck blue represents -0.5 km/s, cyan 0 km/s, kelly 0.5 km/s, and red +1 km/s. The maximal velocity for a few atoms reaches 0.58 km/s.

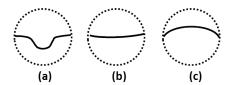


Figure S8. The averaged atom velocities as a function of time for the atoms in the bins as indicated in the parentheses of Table 1 for the crystal containing a 4 nm radius void under the impact velocity of 2 km/s. (a) and (b) represent the velocity along *y* direction; (c) and (d) represent the velocity along *x* direction.

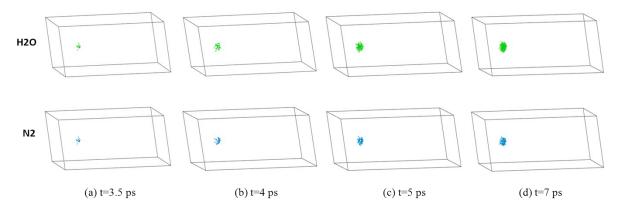


Figure S9. The averaged atom velocities as a function of time for the atoms in the bins as indicated in the parentheses of Table 1 for the crystal containing a 4 nm radius void under the impact velocity of 3 km/s. (a) and (b) represent the velocity along *y* direction; (c) and (d) represent the velocity along *x* direction.

Figure S10. The simple illustrations of representative void shape during void collapse for the crystal containing a 4 nm radius void under the impact velocities of 1 (a), 2 (b), and 3 km/s (c). The difference in the dominant collapse mechanism leads to different void shapes during void collapse.

Figure S11. The spatial distributions of H₂O (top row) and N₂ (bottom row) at various times for the crystal containing a 4 nm radius void under the impact velocity of 2 km/s

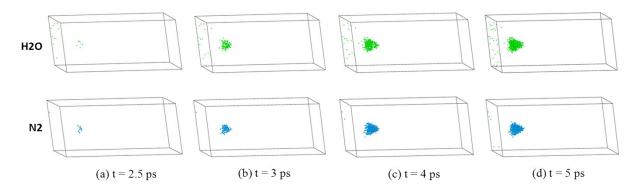


Figure S12. The spatial distributions of H_2O (top row) and N_2 (bottom row) at various times for the crystal containing a 4 nm radius void under the impact velocity of 3 km/s