Supporting Information

Charge-Transport Anisotropy in Black Phosphorus: Critical dependence on the number of layers

Swastika Banerjee^a and Swapan K. Pati*^{a, b}

^{a. †}New Chemistry Unit, [‡]Theoretical Sciences Unit

^{b.} Jawaharlal Nehru Center for Advanced Scientific Research ^{c.} Jakkur P. O., Bangalore 560064, India

^{d.}*E-mail: <u>swapan.jnc@gmail.com</u>

Computational details: We have carried out a SCF calculation with $70 \times 70 \times 1$ k-mesh giving rise to a finer k vs. E (k) spectrum. This can capture the Dirac like state at the vicinity of Γ -point which remains intractable even after using a considerable k-grid of $20 \times 20 \times 1$ through HSE06 functional. So, we have shown the band-dispersion pattern along the Γ -X band line (see Fig. 2d) with PBE functional after consideration of $70 \times 70 \times 1$. We have included this discussion in the supporting information file. We also have mentioned that Fig. 1d is obtained with PBE functional with dense grid.

Supplementary Figures and Table:

Figure S1. Wigner-Seitz cell with high symmetry k-points is shown for optimized structure of TBP (α -P, ABA stacking) as shown in Figure 1a.

Fig. S2. (a), (b), (c) and (b) represent the plot of relaxation time (as in eq. 2) vs. corresponding carrier-states (in k-space) along different transport direction and carriers for monolayer. (e), (f), (g) and (h) are the same for bulk (black) phosphorous.

Table T1. Carrier types (P), where, $e(h)_{x/y}$ denote electron(hole) transport direction along x/y. Mobilities ($\mu_{effective}$) for monolayer have been calculated using equation (1) at T = 300 K.

Р	$\mu_{effective}$ (10 ³ cm ² V ⁻¹ s ⁻¹)
ex	0.28
ey	0.014
h_{x}	0.57
hy	12.49