MS No.: CP-ART-03-2016-002134.R1

Optical Response and Gas Sequestration Properties of Metal Cluster Supported Graphene Nanoflakes

Debdutta Chakraborty and Pratim Kumar Chattaraj*

Department of Chemistry and Centre for Theoretical Studies

Indian Institute of Technology, Kharagpur 721302, West Bengal, India

*To whom correspondence should be addressed. E-mail: <u>pkc@chem.iitkgp.ernet.in</u>, Telephone: +91 3222 283304, Fax: 91-3222-255303.

Supplementary Information

Table

Table S1. Free energy change (ΔG , kcal/mol) and reaction enthalpy change (ΔH , kcal/mol) at 298K for the process: CO/NO/CH₃OH + GR/BGR/BNGR \rightarrow CO/NO/CH₃OH@GR/BGR/BNGR; ZPE corrected dissociation energy (D₀, kcal/mol) for the dissociation process: CO/NO/CH₃OH@GR/BGR/BNGR \rightarrow CO/NO/CH₃OH + GR/BGR/BNGR; HOMO-LUMO gap (Gap) (in eV), Polarizability (α) (in a.u.³); most important stabilizing donor-acceptor interaction (*E*(2)) (in kcal/mol) as given by second order perturbation theory analysis of Fock matrix in the NBO basis for the CO/NO/CH₃OH@GR/BGR/BNGR moieties; NBO charges on adsorbate molecules (Q_K(Ad)); distance in between the adsorbates and adsorbent (R_{Ad-Surface}) (in Å); important bond lengths of the CO/NO/CH₃OH molecules at the adsorbed state on CO/NO/CH₃OH @GR/BGR/BNGR (in Å).

Systems	ΔG	ΔH	D ₀	Gap	α	E(2)	Q _K (Ad)	R _{Ad-}	R _{Ad}
								Surface	
CO@	4.35	-3.05	3.47	3.95	684.19	BD _{C-C}	O=-	C-C=	C-O=
						to	0.51, C=	3.29	
GR						LP* _C	0.51		1.14
						=0.75			

NO@	-2.65	-9.23	9.77	4.68	628.09	LP _N to	N= 0.21,	N-C=	N-O=
CD						BD* _{C-C}	O= -	3.13	1 1 5
UK						=0.24	0.20		1.13
CH ₂ OH@	3.01	-6.27	6.72	3.96	688 30	BDcc	0=-	0-C=	0-
Chigonia	5.01	0.27	0.72	5.70	000.50	to	0.76.	3.26.	H ₃ =0.96.
GR						BD* _{0-H}	H _a =0.49,	H _a -C=	C-O=
						=0.78	C=-0.32,	2.60	
							H _b =0.22,		1.40, C-
							0.19,		H _b =
							0.19		1 10
									1.10
				• • • •					
CO@	3.92	-2.87	3.32	3.08	859.82	LP* _C	0=-	C-B=	C-O=
BGR							0.51, C=	3.25	1.14
_						=5.98	0.51		
						5.70			
NO@	-13.50	-21.59	22.01	4.74	639.08	LP* _B to	N= 0.24,	N-B=	N-O=
DOD						BD* _{N-O}	O= -	2.93	1.15
BGR						=16.14	0.18		
CH.OH@	1.04	_8 71	9.02	3 1 3	847.91	BD _{a a}	0=-	H -C=	0-
CH3OHW	1.04	-0.71	9.02	5.15	047.71	to	0.77	$11_a - C$ 2.54	H_=0.96
BGR						BD* _{O-H}	H _a =0.50,	0-C=	C-O=
						=1.19	C=-0.32,	3.47	1.41, C-
							H _b =0.21,		H _b =
							0.19,		1.00
							0.19		1.09
<u> </u>	3 19	-2.94	3.45	3.67	705.99	I P*a to	0=-	C-N=	C-0=
COW	5.17	-2.74	5.45	5.07	105.77	LP* _P	0.50 C=	1 14	1 14
BNGR						=5.60	0.51		
NO@	-8.74	-14.98	15.56	4.89	603.01	LP_N to	N= 0.20,	N-N=	N-O=
BNGR						BD* _{B-N}	0=-	2.96	1.15
Divolt						=0.76	0.19		
CH ₃ OH(a)	1.03	-8.20	8.64	3.67	707.83	LP ₀ to	O=-	O-B=	0-
						BD* _{C-H}	0.76,	3.00,	H _a =0.96,
BNGR						=9.44	H _a =0.49,	H _a -B=	C-O=
							C=-0.33,	2.96	1.42, C-
							H _b =0.20,		H _b =
	1	1	1	1	1	1	0.20	1	
							0.20,		1.09

Table	S2.	NBO	charges	s on M ₃ O	⁺ moi	eties	(Q_K)	$M_{3}O^{+}));$	distance in	ı bet	wee	n th	e C)/M
centres	s of	the	M_3O^+	moieties	from	the	host	surface	$(R_{M3O}^+$ -Surf	face)	(in	Å)	in	the
CO/NO	D/CI	H ₃ OH($a M_3O^+$	GR/BGR/	BNGF	R cor	nplex	es.						

Systems	$Q_{\rm K}({\rm M}_{3}{\rm O}^{+})$	R _{M30} ⁺ -Surface
CO@	$Q_{Li}=0.78, 0.74, 0.82$	Li-C= 2.49
Li ₃ O ⁺ GR	Q ₀ =-1.01	
NO@	$Q_{Li}=0.81, 0.88, 0.78$	Li-C= 2.49
Li ₃ O ⁺ GR	Q ₀ =-0.98	
CH ₃ OH@	$Q_{Li}=0.81, 0.80, 0.80$	Li-C= 2.57
Li ₃ O ⁺ GR	Q ₀ =-1.52	
CO@	Q _{Na} =0.81, 0.79, 0.83	Na-C= 2.78
Na ₃ O ⁺ GR	Q ₀ =-1.02	
NO@	$Q_{Na}=0.90, 0.87, 0.90$	Na-C= 2.69
Na ₃ O ⁺ GR	Q ₀ =-0.57	
CH ₃ OH@	$Q_{Na}=0.87, 0.86, 0.81$	Na-C= 2.85
Na ₃ O ⁺ GR	Q ₀ =-1.58	
CO@	$Q_{\rm K}=0.81, 0.83, 0.82$	O-C= 2.96
K ₃ O ⁺ GR	Q ₀ =-0.97	
NO@	$Q_{\rm K}=0.89, 0.92, 0.93$	K-C= 2.99
K ₃ O⁺GR	Q ₀ =-0.66	
CH ₃ OH@	$Q_{\rm K}=0.85, 0.82, 0.86$	K-C=3.20
K ₃ O ⁺ GR	$Q_0 = -1.53$	
	$Q_{Li}=0.90, 0.81, 0.72$	$O-B=1.58$, $L1-C_{Avg}=2.43$
	$Q_0 = -1.23$	
	$Q_{Li}=0.89, 0.82, 0.79$	$O-B=1.59, L1-C_{Avg}=2.45$
	$Q_0 = -1.26$	
$CH_3OH(a)$	$Q_{Li}=0.89, 0.80, 0.85$	$O-B=1.57$, $L1-C_{Avg}=2.37$
	$Q_0 = -1.23$	$O D = 1.55 N_0 C = 2.40$
CO(u) No $O^+ P C P$	Q_{Na} = 0.91, 0.88, 0.85	$O-D-1.55$, Na- $C_{Avg}-2.49$
NO@	$Q_0 = 1.38$ $Q_0 = 0.93 \ 0.87 \ 0.88$	$O_{-B} = 1.53 \text{ N}_{2} \cdot C_{-} = 2.55$
Na ₂ O ⁺ BGR	$Q_{Na} = 0.95, 0.07, 0.00$	0-D 1.55, 10-C _{Avg} 2.55
CH ₂ OH@	$O_{N_{\rm e}}=0.91, 0.89, 0.92$	O-B=1.54 Na-CAUE = 2.51
Na ₃ O ⁺ BGR	$O_0 = -1.23$	
CO@	$Q_{\rm K}=0.88, 0.90, 0.91$	$O-B=1.52, K-C_{Avg}=2.81$
K ₃ O ⁺ BGR	$Q_0 = -1.16$,,
NO@	$Q_{\rm K}=0.89, 0.92, 0.92$	O-B=3.84, K-C _{Avg} =3.00
K ₃ O ⁺ BGR	Q ₀ =-0.56	,, <u>,</u>
CH ₃ OH@	$Q_{\rm K}=0.92, 0.93, 0.90$	$O-B=1.51, K-C_{Avg}=2.80$
K ₃ O ⁺ BGR	Q ₀ =-1.18	
CO@	Q _{Li} =0.89, 0.90, 0.70	O-B= 1.54, Li-N _{Avg} = 2.14, Li-C=
Li ₃ O ⁺ BNGR	Q ₀ =-1.29	2.16
NO@	$Q_{Li}=0.82, 0.89, 0.82$	O-B= 1.53, Li-N _{Avg} = 2.12, Li-C=
Li ₃ O ⁺ BNGR	Q ₀ =-1.30	2.21
CH ₃ OH@Li ₃ O ⁺ BNGR	Q _{Li} =0.82, 0.90, 0.84	O-B= 1.53, Li-N _{Avg} = 2.13, Li-C=
	Q ₀ =-1.30	2.29
CO@	$Q_{Na}=0.92, 0.87, 0.83$	O-B= 1.48, Na- N_{Avg} = 2.47, Na-
Na ₃ O ⁺ BNGR	Q ₀ =-1.27	C= 2.47
NO@	$Q_{Na}=0.93, 0.88, 0.86$	O-B= 1.46, Na- N_{Avg} = 2.52, Na-
Na ₃ O ⁺ BNGR	Q ₀ =-1.26	C= 2.65
CH ₃ OH@Na ₃ O ⁺ BNGR	$Q_{Na}=0.93, 0.89, 0.88$	O-B= 1.48, Na- N_{Avg} = 2.48, Na-
	$Q_0 = -1.27$	C= 2.55
CO@	$Q_{\rm K}=0.91, 0.88, 0.90$	O-B= 1.45, K-N _{avg} = 2.82, K-C=

K ₃ O ⁺ BNGR	Q ₀ =-1.22	2.81
NO@K ₃ O ⁺ BNGR	$Q_{\rm K}$ =0.92, 0.92, 0.93	O-B= 1.54, K-N= 2.94, K-C=
	Q ₀ =-0.74	2.96
CH ₃ OH@K ₃ O ⁺ BNGR	$Q_{\rm K}$ =0.91, 0.90, 0.94	O-B= 1.44, K-N _{avg} = 2.84, K-C=
-	Q ₀ =-1.23	2.85

Table S3. Electron density descriptors (in a.u.) at the bond critical points (BCP) for the $CO/NO/CH_3OH@M_3O^+GR/BGR/BNGR$ moieties. Herein, subscripts MOL-G, M-G, MOL-M, MOL refer to the BCPs belonging to the adsorbate-GR/BGR/BNGR, M_3O^+ -GR/BGR/BNGR, adsorbate- M_3O^+ and adsorbate moieties respectively.

Systems	BCP	$\rho(r_c)$	$\nabla^2 \rho(r_c)$	$H(r_c)$	$-G(r_c)/V(r_c)$	ELF
CO@GR	O-Cyclic	0.00	0.02	0.00	1 28	0.01
COWOR	G G	0.00	0.02	0.00	1.20	0.01
	C-C _{MOL-G}	0.01	0.02	0.00	1.39	0.02
	C-O _{MOL}	0.47	1.45	-0.76	0.59	0.35
NO@GR	O-C _{MOL-G}	0.01	0.02	0.00	1.23	0.01
	N-C _{MOL-G}	0.01	0.03	0.00	1.19	0.04
	N-O _{MOL}	0.58	-2.07	-1.09	0.35	0.80
CH ₃ OH@GR	H-C _{MOL-G}	0.01	0.03	0.00	1.30	0.03
	O-C _{MOL-G}	0.01	0.02	0.00	1.22	0.02
	O-H _{MOL}	0.37	-2.11	-0.61	0.12	0.98
	C-O _{MOL}	0.26	-0.47	-0.39	0.41	0.57
CO@BGR	C-C _{MOL-G}	0.01	0.02	0.00	1.37	0.03
	O-C _{MOL-G}	0.00	0.01	0.00	1.30	0.01
	C-O _{MOL}	0.47	1.44	-0.76	0.60	0.35
NO@BGR	N-C _{MOL-G}	0.01	0.03	0.00	1.07	0.07
	O-C _{MOL-G}	0.01	0.02	0.00	1.19	0.02
	N-O _{MOL}	0.58	-2.13	-1.12	0.35	0.80
CH ₃ OH@BGR	C-C _{MOL-G}	0.01	0.02	0.00	1.32	0.02

	$H\text{-}C_{MOL\text{-}G}$	0.01	0.03	0.00	1.25	0.03
	C-O _{MOL}	0.27	-0.49	-0.39	0.41	0.58
	O-H _{MOL}	0.37	-2.12	-0.61	0.11	0.98
CO@BNGR	C-N _{MOL-G}	0.01	0.03	0.00	1.29	0.03
	C-O _{MOL}	0.47	1.44	-0.77	0.60	0.35
NO@BNGR	N-N _{MOL-G}	0.01	0.03	0.00	1.22	0.03
	N-O _{MOL}	0.58	-2.07	-1.09	0.34	0.80
CH ₃ OH@BNGR	O-N _{MOL-G}	0.01	0.03	0.00	1.06	0.03
	C-N _{MOL-G}	0.01	0.03	0.00	1.27	0.02
	C-O _{MOL}	0.26	-0.44	-0.38	0.42	0.56
	O-H _{MOL}	0.37	-2.11	-0.61	0.12	0.98
CO@Li ₃ O+GR	O-C _{M-G}	0.01	0.04	0.00	1.06	0.05
	Li-C _{M-G}	0.01	0.05	0.00	1.28	0.01
	C-O _{MOL}	0.38	0.09	-0.63	0.51	0.43
	C-O _{MOL-M}	0.26	-0.33	-0.38	0.44	0.51
	O-Li _{MOL-M}	0.04	0.27	0.00	1.27	0.04
NO@Li ₃ O+GR	O-C _{M-G}	0.01	0.04	0.00	1.06	0.04
	Li-C _{M-G}	0.01	0.05	0.00	1.30	0.02
	N-O _{MOL}	0.37	-0.61	-0.40	0.38	0.83
	N-O _{MOL-M}	0.29	-0.24	-0.25	0.43	0.78
	O-Li _{MOL-M}	0.03	0.24	0.00	1.27	0.03
CH ₃ OH@	O-C _{M-G}	0.01	0.03	0.00	1.04	0.05
Li ₃ O ⁺ GR	Li-C _{M-G}	0.01	0.04	0.00	1.31	0.01
	C-O _{MOL}	0.24	-0.31	-0.35	0.44	0.51
	O-H _{MOL}	0.36	-2.15	-0.61	0.11	0.98

	H-C _{MOL-G}	0.01	0.03	0.00	1.19	0.04
CO@Na ₃ O ⁺ GR	O-C _{M-G}	0.01	0.05	0.00	1.13	0.04
	Na-C _{M-G}	0.07	0.03	0.00	1.26	0.01
	C-O _{MOL}	0.35	-0.02	-0.57	0.50	0.44
	C-O _{MOL-M}	0.31	-0.25	-0.48	0.47	0.47
	O-Na _{MOL-M}	0.02	0.11	0.00	1.19	0.03
NO@Na ₃ O+GR	O-C _{M-G}	0.01	0.02	0.00	1.16	0.02
	Na-C _{M-G}	0.01	0.07	0.00	1.26	0.02
	N-O _{MOL}	0.46	-1.03	-0.59	0.36	0.85
	N-O _{MOL-M}	0.47	-1.04	-0.59	0.36	0.85
CH ₃ OH@	O-C _{M-G}	0.01	0.02	0.00	1.17	0.04
Na ₃ O ⁺ GR	Na-C _{M-G}	0.01	0.03	0.00	1.28	0.01
	C-O _{MOL}	0.24	-0.28	-0.34	0.44	0.50
	H-O _{MOL}	0.37	-2.15	-0.62	0.11	0.98
	O-Na _{MOL-M}	0.02	0.15	0.01	1.27	0.03
	H-O _{MOL-M}	0.02	0.05	0.00	0.90	0.11
CO@K ₃ O ⁺ GR	O-C _{M-G}	0.01	0.04	0.00	1.14	0.03
	K-C _{M-G}	0.01	0.03	0.00	1.36	0.02
	C-O _{MOL}	0.35	-0.02	-0.56	0.50	0.44
	C-O _{MOL-M}	0.31	-0.20	-0.49	0.47	0.46
	O-K _{MOL-M}	0.02	0.09	0.00	1.10	0.05
NO@	O-C _{M-G}	0.00	0.01	0.00	1.30	0.01
K ₃ O ⁺ GR	K-C _{M-G}	0.02	0.08	0.00	1.11	0.04
	N-O _{MOL}	0.50	-1.20	-0.67	0.36	0.85
	N-O _{MOL-M}	0.43	-0.86	-0.52	0.37	0.85
CH ₃ OH@	O-C _{M-G}	0.01	0.02	0.00	1.29	0.03

K ₃ O ⁺ GR	K-C _{M-G}	0.01	0.03	0.00	1.34	0.02
	H-O _{MOL-M}	0.03	0.06	0.00	0.86	0.16
	O-K _{MOL-M}	0.02	0.09	0.00	1.14	0.04
	O-H _{MOL}	0.37	-2.13	-0.61	0.12	0.98
	C-O _{MOL}	0.24	-0.30	-0.34	0.44	0.50
CO@	O-B _{M-G}	0.12	0.40	-0.08	0.69	0.18
Li ₃ O ⁺ BGR	Li-C _{M-G}	0.02	0.07	0.00	1.19	0.03
	C-O _{MOL}	0.48	1.44	-0.79	0.59	0.35
	C-Li _{MOL-M}	0.01	0.07	0.00	1.48	0.02
	C-C _{MOL-G}	0.01	0.02	0.00	1.33	0.03
NO@	O-B _{M-G}	0.12	0.39	-0.08	0.69	0.18
Li ₃ O ⁺ BGR	Li-C _{M-G}	0.01	0.06	0.00	1.32	0.02
	N-O _{MOL}	0.57	-2.02	-1.06	0.34	0.81
	O-Li _{MOL-M}	0.01	0.04	0.00	1.35	0.01
	N-O _{MOL-M}	0.01	0.02	0.00	1.05	0.03
CH ₃ OH@	O-B _{M-G}	0.12	0.41	-0.08	0.70	0.18
Li ₃ O ⁺ BGR	Li-C _{M-G}	0.02	0.10	0.00	1.25	0.04
	O-H _{MOL}	0.37	-2.18	-0.62	0.11	0.98
	C-O _{MOL}	0.24	-0.25	-0.34	0.45	0.48
	O-Li _{MOL-M}	0.03	0.23	0.00	1.35	0.03
	H-C _{MOL-G}	0.01	0.02	0.00	1.31	0.03
CO@	O-B _{M-G}	0.13	0.44	-0.09	0.70	0.19
Na ₃ O ⁺ BGR	Na-C _{M-G}	0.02	0.09	0.00	1.26	0.03
	C-O _{MOL}	0.47	1.35	-0.78	0.59	0.35
	C-Na _{MOL-M}	0.01	0.04	0.00	1.38	0.01
	C-O _{MOL-M}	0.01	0.02	0.00	1.23	0.03

	C-C _{MOL-G}	0.01	0.02	0.00	1.42	0.02
NO@	O-B _{M-G}	0.13	0.48	-0.09	0.70	0.19
Na ₃ O ⁺ BGR	Na-C _{MOL-G}	0.02	0.08	0.00	1.28	0.03
	N-O _{MOL}	0.52	-1.61	-0.86	0.35	0.81
	O-C _{MOL-G}	0.01	0.03	0.00	1.11	0.04
	N-C _{MOL-G}	0.03	0.07	0.00	1.09	0.20
	N-Na _{MOL-M}	0.01	0.05	0.00	1.21	0.01
CH ₃ OH@	O-B _{M-G}	0.13	0.45	-0.09	0.70	0.19
Na ₃ O ⁺ BGR	Na-C _{MOL-G}	0.02	0.09	0.00	1.27	0.03
	C-O _{MOL}	0.25	-0.34	-0.35	0.43	0.52
	O-H _{MOL}	0.36	-2.14	-0.61	0.11	0.98
	O-Na _{MOL-M}	0.02	0.15	0.01	1.24	0.03
	H-C _{MOL-G}	0.01	0.04	0.00	1.16	0.05
CO@	O-B _{M-G}	0.14	0.49	-0.09	0.70	0.20
K ₃ O ⁺ BGR	K-C _{M-G}	0.02	0.07	0.00	1.24	0.04
	C-O _{MOL}	0.47	1.33	-0.77	0.59	0.35
	C-O _{MOL-M}	0.01	0.04	0.00	1.11	0.06
	O-K _{MOL-M}	0.01	0.04	0.00	1.38	0.02
NO@	K-C _{M-G}	0.01	0.04	0.00	1.27	0.03
K ₃ O ⁺ BGR	N-O _{MOL}	0.47	-1.03	-0.59	0.36	0.85
	N-O _{MOL-M}	0.46	-1.03	-0.59	0.36	0.85
	O-K _{MOL-M}	0.02	0.01	0.00	1.11	0.05
CH ₃ OH@	O-B _{M-G}	0.14	0.49	-0.09	0.70	0.20
K ₃ O ⁺ BGR	K-C _{M-G}	0.02	0.07	0.00	1.24	0.04
	C-O _{MOL}	0.25	-0.38	-0.37	0.42	0.54
	O-H _{MOL}	0.37	-2.15	-0.61	0.11	0.98

	O-K _{MOL-M}	0.02	0.08	0.00	1.13	0.04
	H-O _{MOL-M}	0.02	0.04	0.00	0.97	0.06
CO@	O-B _{M-G}	0.13	0.45	-0.09	0.69	0.20
Li ₃ O ⁺ BNGR	Li-C _{M-G}	0.02	0.12	0.01	1.24	0.03
	C-O _{MOL}	0.48	1.43	-0.80	0.59	0.35
	C-Li _{MOL-M}	0.01	0.08	0.01	1.44	0.02
	C-C _{MOL-G}	0.01	0.02	0.00	1.36	0.04
NO@	O-B _{M-G}	0.14	0.46	-0.09	0.69	0.20
Li ₃ O ⁺ BNGR	Li-C _{M-G}	0.02	0.10	0.00	1.25	0.03
	N-O _{MOL}	0.57	-1.96	-1.02	0.34	0.81
	O-Li _{MOL-M}	0.01	0.06	0.00	1.35	0.01
	N-Li _{MOL-M}	0.01	0.05	0.00	1.34	0.01
	N-O _{MOL-M}	0.01	0.02	0.00	1.02	0.04
CH ₃ OH@	O-B _{M-G}	0.14	0.47	-0.09	0.69	0.20
Li ₃ O ⁺ BNGR	Li-C _{M-G}	0.02	0.12	0.01	1.28	0.02
	C-O _{MOL}	0.25	-0.36	-0.36	0.43	0.53
	O-H _{MOL}	0.36	-2.14	-0.61	0.10	0.98
	O-Li _{MOL-M}	0.03	0.20	0.01	1.31	0.03
	H-C _{MOL-G}	0.01	0.03	0.00	1.15	0.04
CO@	O-B _{M-G}	0.15	0.56	-0.10	0.70	0.21
Na ₃ O ⁺ BNGR	Na-C _{M-G}	0.02	0.09	0.00	1.23	0.03
	C-O _{MOL}	0.47	1.37	-0.78	0.59	0.35
	C-Na _{MOL-M}	0.01	0.05	0.00	1.38	0.01
	O-Na _{MOL-M}	0.00	0.02	0.00	1.44	0.00
NO@	O-B _{M-G}	0.16	0.62	-0.11	0.71	0.21
Na ₃ O ⁺ BNGR	Na-C _{M-G}	0.02	0.09	0.00	1.24	0.02

	N-O _{MOL}	0.53	-1.59	-0.87	0.35	0.82
	N-C _{MOL-G}	0.02	0.05	0.00	1.20	0.09
	O-C _{MOL-G}	0.02	0.06	0.00	1.22	0.05
	N-Na _{MOL-M}	0.02	0.09	0.00	1.35	0.02
CH ₃ OH@	O-B _{M-G}	0.16	0.58	-0.11	0.70	0.21
Na ₃ O ⁺ BNGR	Na-C _{M-G}	0.02	0.09	0.00	1.24	0.02
	C-O _{MOL}	0.26	-0.41	-0.37	0.42	0.55
	O-H _{MOL}	0.36	-2.11	-0.60	0.11	0.98
	O-Na _{MOL-M}	0.02	0.14	0.01	1.24	0.03
CO@	O-B _{M-G}	0.17	0.65	-0.11	0.71	0.22
K ₃ O ⁺ BNGR	K-C _{M-G}	0.02	0.07	0.00	1.20	0.04
	C-O _{MOL}	0.47	1.32	-0.77	0.59	0.35
	C-K _{MOL-M}	0.01	0.04	0.00	1.38	0.02
	C-O _{MOL-M}	0.02	0.05	0.00	1.09	0.06
NO@	O-B _{M-G}	0.13	0.46	-0.08	0.71	0.18
K ₃ O ⁺ BNGR	K-C _{M-G}	0.01	0.05	0.00	1.27	0.03
	N-O _{MOL}	0.42	-0.82	-0.49	0.37	0.85
	O-K _{MOL-M}	0.02	0.09	0.00	1.10	0.04
	N-O _{MOL-M}	0.28	-0.22	-0.24	0.43	0.78
CH ₃ OH@	O-B _{M-G}	0.17	0.70	-0.12	0.71	0.22
K ₃ O ⁺ BNGR	K-C _{M-G}	0.02	0.07	0.00	1.21	0.03
	C-O _{MOL}	0.24	-0.32	-0.34	0.43	0.52
	O-H _{MOL}	0.37	-2.13	-0.61	0.11	0.98
	O-K _{MOL-M}	0.01	0.06	0.00	1.13	0.03
	H-C _{MOL-G}	0.01	0.03	0.00	1.22	0.04

(d)

(e)

Figure S1: Geometrical alignment of the adsorbed guest@GR/BGR moieties at 500 fs where (a) $Li_3O^+@GR$, (b) $Na_3O^+@GR$, (c) $K_3O^+@GR$, (d) $Li_3O^+@BGR$ and (e) $Na_3O^+@BGR$ respectively.

Figure S2: Geometrical alignment of the adsorbed guest@BGR/BNGR moieties at 500 fs where (a) K_3O^+ @BGR, (b) Li_3O^+ @BNGR, (c) Na_3O^+ @BNGR and (d) K_3O^+ @BNGR respectively.

Figure S3. The TDOS plots of (a) GR, (b) BGR and (c) BNGR respectively.

Figure S4. The TDOS plots of $M_3O^+@GR$ where (a) $Li_3O^+@GR$, (b) $Na_3O^+@GR$ and (c) $K_3O^+@GR$ respectively. Here frag1 denotes M_3O^+ moieties whereas frag2 denotes GR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S5. The TDOS plots of $M_3O^+@BGR$ where (a) $Li_3O^+@BGR$, (b) $Na_3O^+@BGR$ and (c) $K_3O^+@BGR$ respectively. Here frag1 denotes M_3O^+ moieties whereas frag2 denotes BGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S6. The TDOS plots of $M_3O^+@BNGR$ where (a) $Li_3O^+@BNGR$, (b) $Na_3O^+@BNGR$ and (c) $K_3O^+@BNGR$ respectively. Here frag1 denotes M_3O^+ moieties whereas frag2 denotes BNGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S7. The TDOS plots of CO/NO/CH₃OH@GR where (a) CH₃OH@GR, (b) CO@GR and (c) NO@GR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes GR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S8. The TDOS plots of CO/NO/CH₃OH@BGR where (a) CH₃OH@BGR, (b) CO@BGR and (c) NO@BGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes BGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S9. The TDOS plots of CO/NO/CH₃OH@BNGR where (a) CH₃OH@BNGR, (b) CO@BNGR and (c) NO@BNGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes BNGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S10. The TDOS plots of CO/NO/CH₃OH@Li₃O⁺GR where (a) CH₃OH@Li₃O⁺GR, (b) CO@Li₃O⁺GR and (c) NO@Li₃O⁺GR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Li₃O⁺@GR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S11. The TDOS plots of CO/NO/CH₃OH@Na₃O⁺GR where (a) CH₃OH@Na₃O⁺GR, (b) CO@Na₃O⁺GR and (c) NO@ Na₃O⁺GR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Na₃O⁺@GR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S12. The TDOS plots of CO/NO/CH₃OH@K₃O⁺GR where (a) CH₃OH@ K₃O⁺GR, (b) CO@K₃O⁺GR and (c) NO@K₃O⁺GR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes K₃O⁺@GR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S13. The TDOS plots of CO/NO/CH₃OH@Li₃O⁺BGR where (a) CH₃OH@Li₃O⁺BGR, (b) CO@Li₃O⁺BGR and (c) NO@Li₃O⁺BGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Li₃O⁺@BGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S14. The TDOS plots of CO/NO/CH₃OH@Na₃O⁺BGR where (a) CH₃OH@Na₃O⁺BGR, (b) CO@Na₃O⁺BGR and (c) NO@Na₃O⁺BGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Na₃O⁺@BGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S15. The TDOS plots of CO/NO/CH₃OH@K₃O⁺BGR where (a) CH₃OH@ K₃O⁺BGR, (b) CO@K₃O⁺BGR and (c) NO@K₃O⁺BGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes K₃O⁺@BGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S16. The TDOS plots of CO/NO/CH₃OH@Li₃O⁺BNGR where (a) CH₃OH@Li₃O⁺BNGR, (b) CO@Li₃O⁺BNGR and (c) NO@Li₃O⁺BNGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Li₃O⁺@BNGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S17. The TDOS plots of CO/NO/CH₃OH@Na₃O⁺BNGR where (a) CH₃OH@Na₃O⁺BNGR, (b) CO@Na₃O⁺BNGR and (c) NO@ Na₃O⁺BNGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes Na₃O⁺@BNGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.

Figure S18. The TDOS plots of CO/NO/CH₃OH@K₃O⁺BNGR where (a) CH₃OH@ K₃O⁺BNGR, (b) CO@K₃O⁺BNGR and (c) NO@K₃O⁺BNGR respectively. Here frag1 denotes CO/NO/CH₃OH moieties whereas frag2 denotes K₃O⁺@BNGR. The vertical line designates the E_F whereas the vertical bars represent occupied and virtual orbitals.