

Supporting Information for

Mechanism of Co-C Photodissociation in Adenosylcobalamin

Brady D. Garabato,¹ Piotr Lodowski,² Maria Jaworska,²
and Paweł M. Kozłowski*^{1,3}

¹ Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States

² Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9,
PL-40 006 Katowice, Poland

³ Visiting professor, Department of Food Sciences, Medical University of Gdańsk, Al.
Gen. J. Hallera 107, 80-416 Gdańsk, Poland

Contents

Table S1. Selected geometrical parameters for Im-[Co^{III}(corrin)]-Ado⁺ model complex. The parameters for ground state of Im-[Co^{III}(corrin)]-Ado⁺ are compared with experimental data.

Table S2. Selected geometrical parameters for Im-[Co^{III}(corrin)]-Ado⁺ model complex and other species involved in the photoreaction process. The parameters for ground state of Im-[Co^{III}(corrin)]-Ado⁺ are compared with experimental.

Table S3. NBO charges for Im-[Co^{III}(corrin)]-Ado⁺ model complex and other species involved in the photoreaction process. Results for S₀ and S₁ optimized geometry.

Figure S1. Structural model of AdoCbl used in the calculations.

Figure S2. Molecular orbital diagram for Im-[Co^{III}(corrin)]-Ado⁺ model complex in the S₀ and S₁ optimized geometry.

Figure S3. HOMO and LUMO molecular orbitals for electron excitations in the optimized geometries of S₁ states together with isosurface and cross-section contour along the axial bonding (in two different section planes) of electron density difference between the S₁ and S₀ states for substrate and products of photolysis process.

Figure S4. Energy diagram of photoreaction on Path A.

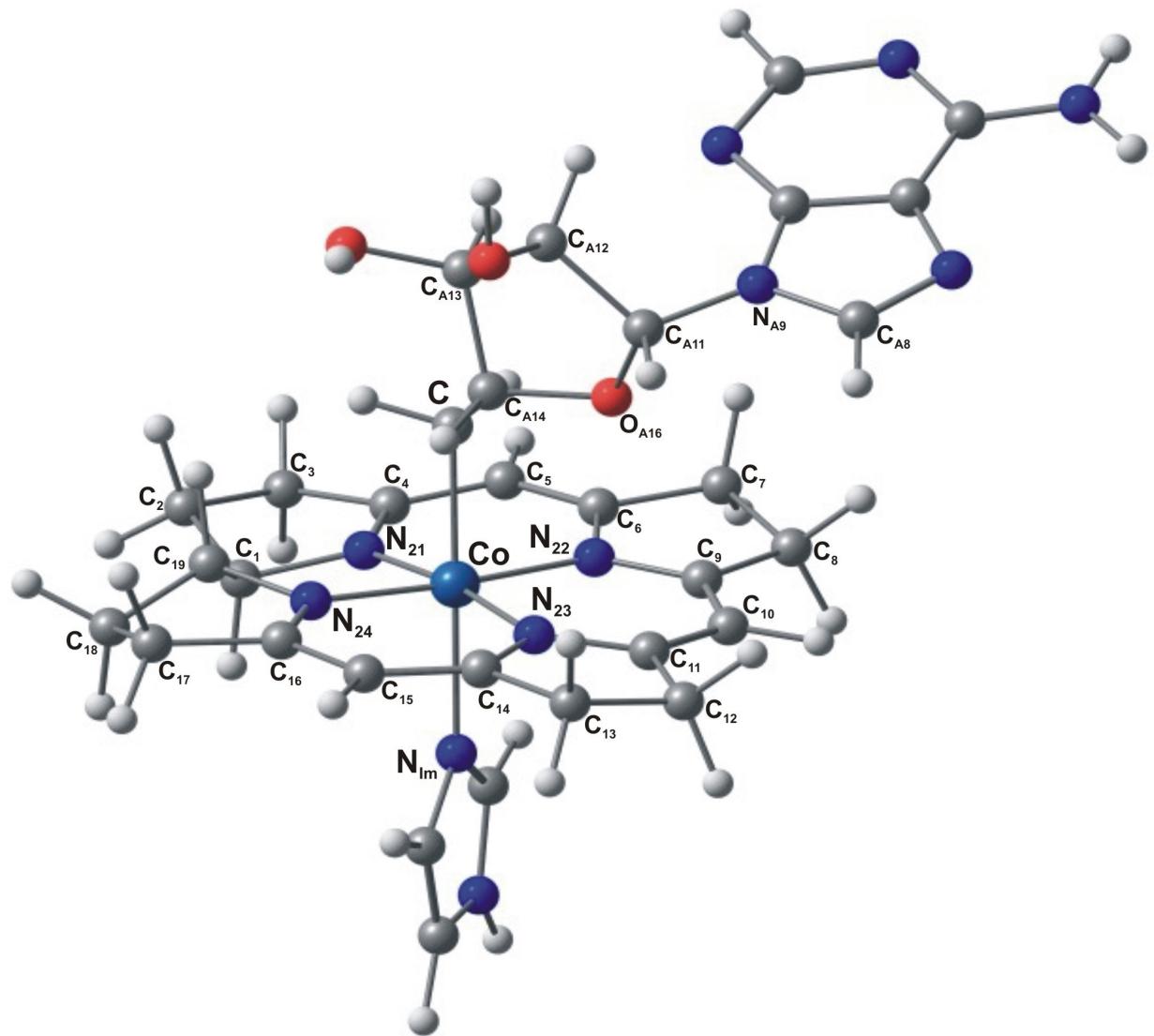
Figure S5. Energy diagram of photoreaction on Path B.

Table S1. Selected geometrical parameters for Im-[Co^{III}(corrin)]-Ado⁺ model complex. The parameters for ground state of Im-[Co^{III}(corrin)]-Ado⁺ are compared with experimental data (atom numbering is given in Figure S1).

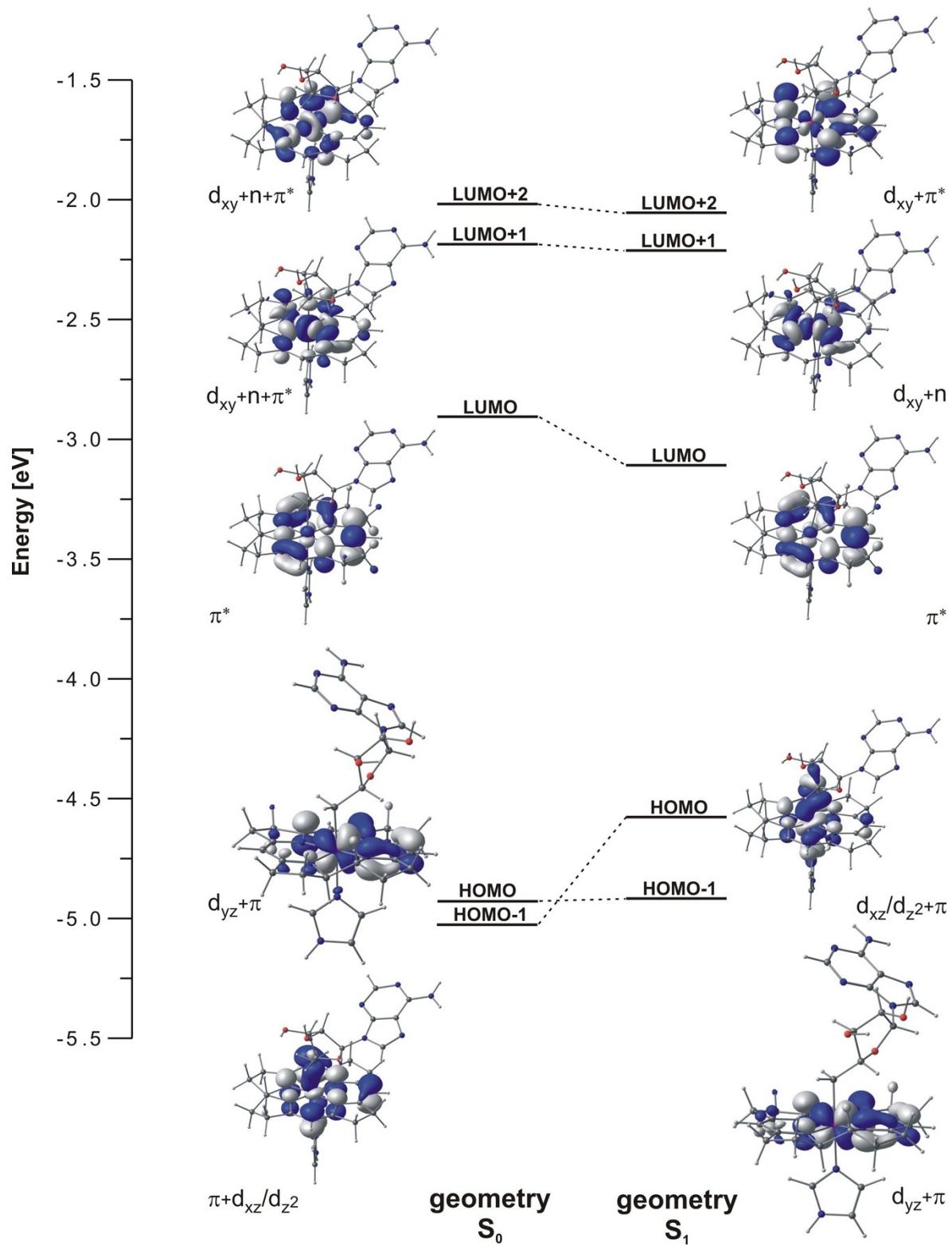
Structural parameter	S ₀	Exp. ^a	S ₁
r [Å]			
Co-C	2.014	2.032	2.060
C-N _{Im}	2.193	2.240	2.046
Co-N ₂₁	1.877	1.880	1.886
Co-N ₂₂	1.936	1.915	1.970
Co-N ₂₃	1.938	1.912	1.972
Co-N ₂₄	1.880	1.868	1.884
Bond angles			
C-Co-N _{Im}	176.7	171.3	165.1
N ₂₁ -Co-C	89.0	92.6	99.0
N ₂₂ -Co-C	89.0	84.07	82.9
N ₂₃ -Co-C	86.1	90.3	84.0
N ₂₄ -Co-C	88.8	93.2	94.9
N ₂₁ -Co-N _{Im}	88.0	91.8	92.6
N ₂₂ -Co-N _{Im}	89.6	88.5	87.7
N ₂₃ -Co-N _{Im}	87.0	86.2	85.5
N ₂₄ -Co-N _{Im}	92.3	94.8	95.9
N ₂₁ -Co-N ₂₂	91.3	89.8	90.5
N ₂₂ -Co-N ₂₃	94.7	96.8	96.3
N ₂₃ -Co-N ₂₄	91.6	90.2	91.2
N ₂₄ -Co-N ₂₁	82.5	83.2	82.1
Co-N ₂₁ -C ₁	116.6	117.5	116.7
Co-N ₂₂ -C ₉	124.8	122.9	122.7
Co-N ₂₃ -C ₁₁	124.3	123.3	122.7
Co-N ₂₄ -C ₁₉	116.9	115.4	116.9
Torsion angles			
N ₂₁ -N ₂₂ -N ₂₃ -Co	-3.4	-1.6	-1.5
N ₂₁ -N ₂₂ -N ₂₃ -N ₂₄	-4.5	-3.5	-3.6
Co-N ₂₂ -C ₉ -C ₁₀	1.4	-6.0	-1.3
Co-N ₂₂ -C ₆ -C ₅	-8.4	-14.4	-5.7
Co-N ₂₃ -C ₁₄ -C ₁₅	1.1	-3.9	-0.5
Co-N ₂₁ -C ₁ -C ₁₉	33.5	33.3	33.6
N ₂₁ -C ₁ -C ₁₉ -N ₂₄	-37.3	-38.4	-38.5
N ₂₁ -Co-N ₂₄ -C ₁₉	-10.2	-11.1	-11.8
C ₁ -C ₂ -C ₃ -C ₄	-24.6	-29.4	-25.7
C ₆ -C ₇ -C ₈ -C ₉	-10.5	-28.7	-10.9
C ₁₁ -C ₁₂ -C ₁₃ -C ₁₄	8.1	-25.0	0.7
C ₁₆ -C ₁₇ -C ₁₈ -C ₁₉	-26.7	-31.5	-26.7

^a Ouyang, L.; Rulis, P.; Ching, G.; Nardin, L.; Randaccio, L. *Inorg. Chem.* **2004**, 43, 1235-1241. The structure contains in the “lower” axial position, the 5,6-dimethylbenzimidazole (DBI) as an axial ligand.

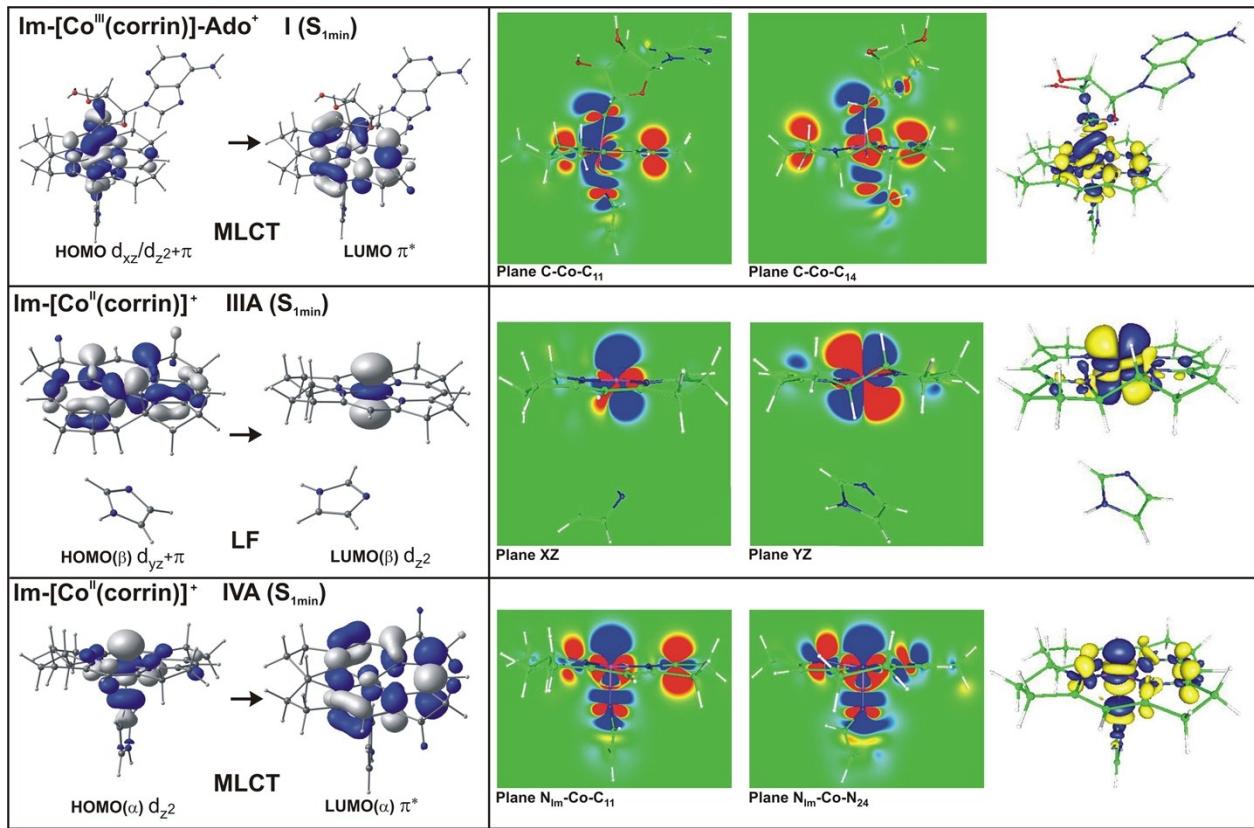
Table S2. Selected geometrical parameters for Im-[Co^{III}(corrin)]-Ado⁺ model complex and other species involved in the photoreaction process. The parameters for ground state of Im-[Co^{III}(corrin)]-Ado⁺ are compared with experimental data (atom numbering is given in Figure S1).

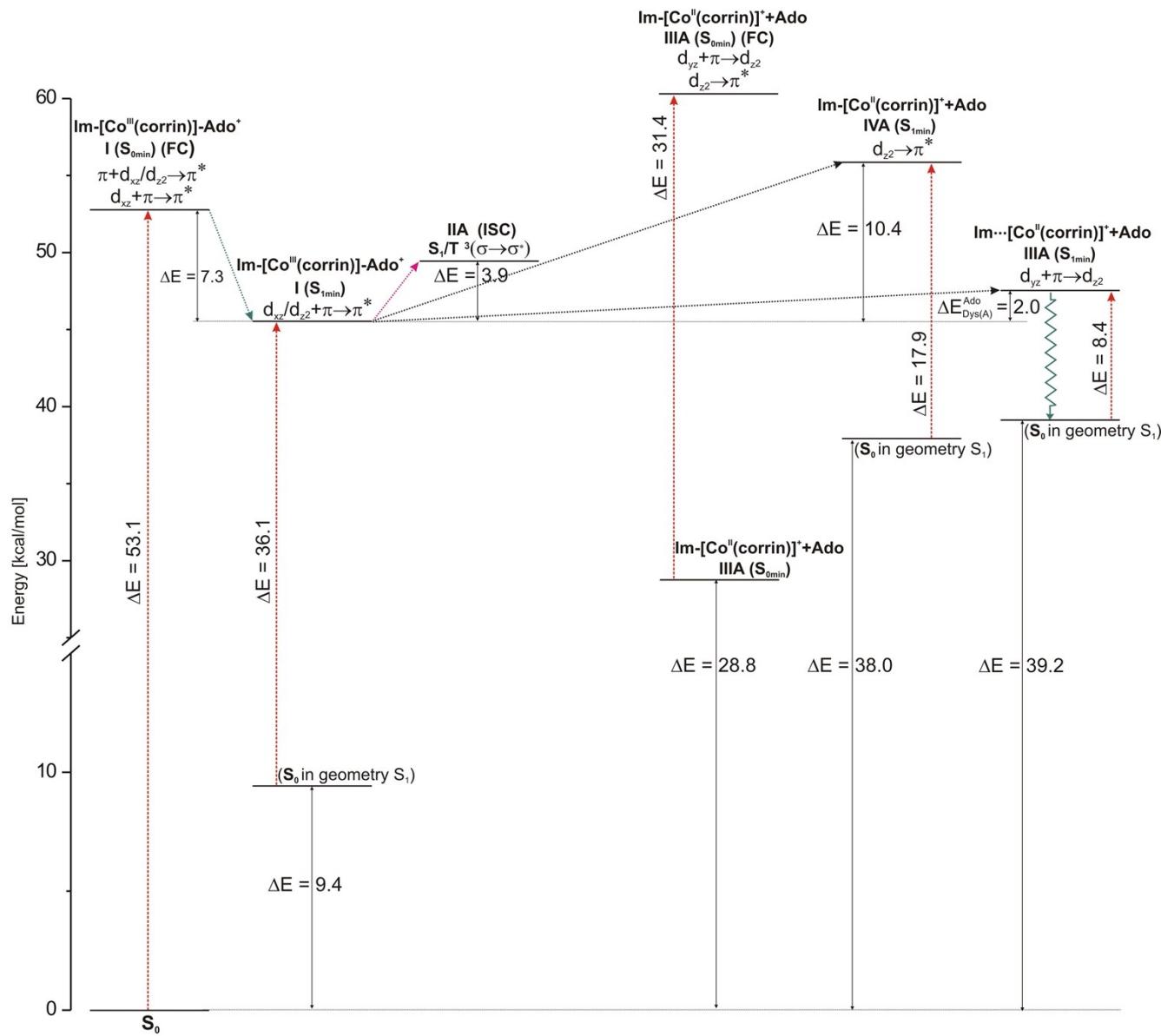

Im-[Co ^{III} (corrin)]-Ado ⁺	I (S _{0min})	I (S _{1min})	Exp. ^a
Bond distances [Å]			
Co-C	2.014	2.060	2.032
C-N _{Im}	2.193	2.046	2.240
Co-N ₂₁	1.877	1.886	1.880
Co-N ₂₂	1.936	1.970	1.915
Co-N ₂₃	1.938	1.972	1.912
Co-N ₂₄	1.880	1.884	1.868
Bond angles [deg]			
C-Co-N _{Im}	176.7	165.1	171.3
N ₂₁ -Co-N ₂₃	172.2	172.8	172.9
N ₂₂ -Co-N ₂₄	173.5	171.9	172.4
Im-[Co ^{II} (corrin)] ⁺	IIIA (S _{0min})	IIIA (S _{1min})	IVA (S _{1min})
Bond distances [Å]			
C-N _{Im}	2.162	4.863	1.882
Co-N ₂₁	1.879	1.843	1.884
Co-N ₂₂	1.940	1.913	1.945
Co-N ₂₃	1.935	1.917	1.946
Co-N ₂₄	1.882	1.843	1.894
Bond angles [deg]			
N ₂₁ -Co-N ₂₃	172.1	170.2	169.7
N ₂₂ -Co-N ₂₄	165.6	170.3	164.2

^a Ouyang, L.; Rulis, P.; Ching, G.; Nardin, L.; Randaccio, L. *Inorg. Chem.* **2004**, *43*, 1235-1241. The structure contains in the “lower” axial position, the 5,6-dimethylbenzimidazol (DBI) as a axial ligand


Table S3. NBO charges for Im-[Co^{III}(corrin)]-Ado⁺ model complex and other species involved in the photoreaction process. Results for S₀ and S₁ optimized geometry.

	NBO charges			
	q _{S0}	q _{S0}	q _{S1}	Δq ^{a)}
Im-[Co^{III}(corrin)]-Ado⁺	I (S _{0min})	I (S _{1min})		
Co	0.767	0.782	0.885	0.104
C	-0.469	-0.502	-0.415	0.087
N _{Im}	-0.471	-0.468	-0.413	0.055
Ado	-0.133	-0.144	0.021	0.165
Im	0.153	0.179	0.291	0.112
Corr	0.213	0.183	-0.198	-0.381
Im-[Co^{II}(corrin)]⁺	IIIA (S _{0min})	IIIA (S _{1min})		
Co	0.911	0.975	0.920	-0.055
N _{Im}	-0.475	-0.487	-0.486	0.001
Im	0.141	0.002	0.002	0.000
Corr	-0.052	0.023	0.078	0.055
	IVA (S _{1min})			
Co		0.863	0.883	0.020
N _{Im}		-0.471	-0.310	0.161
Im		0.167	0.414	0.247
Corr		-0.030	-0.297	-0.267


^{a)} Δq – difference between charge in excited state and ground state in geometry excited state.


Figure S1. Structural model of AdoCbl used in the calculations.

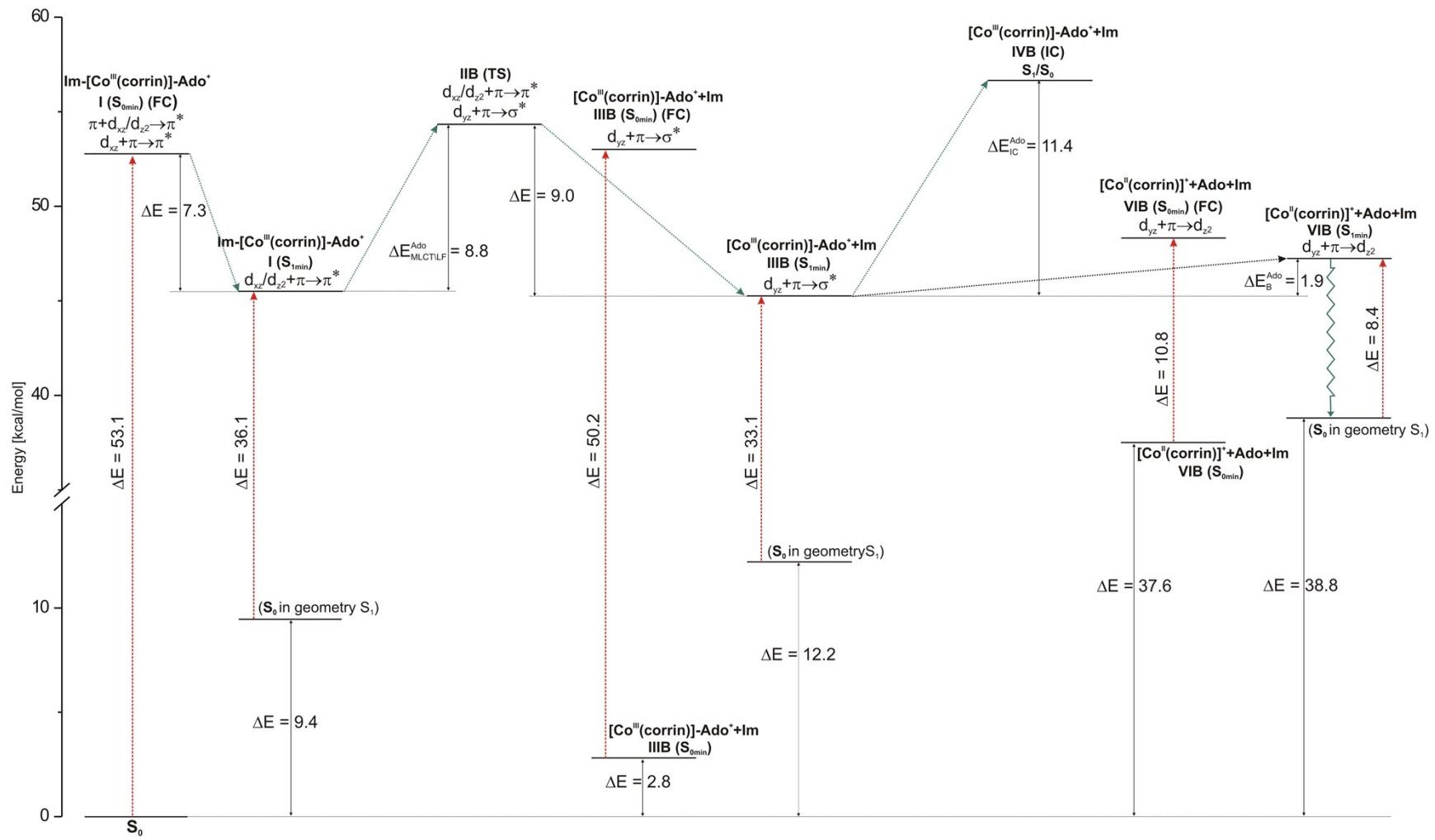

Figure S2. Molecular orbital diagram for Im-[Co^{III}(corrin)]-Ado⁺ model complex in the S₀ and S₁ optimized geometry.

Figure S3. HOMO and LUMO molecular orbitals for electron excitations in the optimized geometries of S₁ states together with isosurface and cross-section contour along the axial bonding (in two different section planes) of electron density difference between the S₁ and S₀ states for substrate and products of photolysis process. The yellow and red colors denote electron space, blue color - hole space.

Figure S4. Energy diagram of photoreaction on Path A (ΔE values in kcal/mol).

Figure S5. Energy diagram of photoreaction on Path B (ΔE values in kcal/mol).