# Dissociative electron transfer in polychlorinated aromatics. Reduction potentials from convolution analysis and quantum chemical calculations

Piotr P. Romańczyk\*, Grzegorz Rotko, Stefan S. Kurek\*

Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

E-mail:piotrom@chemia.pk.edu.pl (PPR); skurek@chemia.pk.edu.pl (SSK)

# **Supplementary Information**



Fig. S1. Successive steps of transfer coefficient calculation, from voltammograms divided by the square root of scan rate (a), through semi-integrals (b) and  $\ln((I_I - I(E))/i(E))$  vs. E (c), to transfer coefficient, a vs. E (d). Calculations were done for 3 mM pentachloroanisole at GCE in DMF/0.1 M n-Bu<sub>4</sub>NBF<sub>4</sub> using scan rates, v = 1, 2, 5, 10 and 20 V s<sup>-1</sup>.

Table S1. Zero-point corrected gas-phase electron affinities (eV) computed at DFT:B3LYP-D2/6-311++G(2d) and CCSD(T)-F12/aug-cc-pVTZ levels (using Hartree-Fock or B3LYP reference determinants and the B3LYP/6-31+G(d) structures), and a Petersson's Complete Basis Set method, CBS-QB3 (ref. 29 in the main text).

| Reaction                             | DFT-D                    | HF-CC-F12a            | KS-CC-F12a       | CBS-QB3 | Exp                     |
|--------------------------------------|--------------------------|-----------------------|------------------|---------|-------------------------|
|                                      |                          | (F12b)                | (F12b)           |         | -                       |
| $C_6Cl_6 + e^- = C_6Cl_6^{\bullet-}$ | 1.35                     | $0.82(0.81)^a$        | $0.90(0.88)^{b}$ | 0.90    | $0.92 \pm 0.10^{\circ}$ |
| $Cl^{\bullet} + e^{-} = Cl^{-}$      | 3.68 <sup><i>d</i></sup> | $3.61^{d} (3.59^{d})$ |                  |         | 3.6131 <sup>e</sup>     |
| a THE ID HE I'                       |                          | • 0.017 1.01          | 00 / 1           |         |                         |

<sup>*a*</sup>  $T_1^{\text{HF}}$  and  $D_1^{\text{HF}}$  diagnostics for  $C_6Cl_6^{\leftarrow}$  are 0.017 and 0.108, respectively. <sup>*b*</sup>  $T_1^{\text{KS}}$  and  $D_1^{\text{KS}}$  diagnostics for  $C_6Cl_6^{\leftarrow}$  are 0.014 and 0.077, respectively.

<sup>c</sup> W. B. Knighton, J. A. Bognar and E. P. Grimsrud, J. Mass Spectrom., 1995, 30, 557-562.

<sup>d</sup> Includes spin-orbit correction for Cl<sup>•</sup> (-36.5 meV).

<sup>e</sup> J. D. D. Martin and J. W. Hepburn, J. Chem. Phys., 1998, 109, 8139-8142.

**Table S2.** Zero-point corrected C–Cl bond homolytic dissociation energies (kcal  $mol^{-1}$ ) computed at DFT:B3LYP-D2/6-311++G(2d,2p) and CCSD(T)-F12/aug-cc-pVTZ levels in the gas phase using the B3LYP/6-31+G(d,p) structures.

| Reaction                                              | DFT-D | HF-CC-F12a (F12b) <sup><i>a</i></sup> |
|-------------------------------------------------------|-------|---------------------------------------|
| $C_6Cl_5OMe = C_6Cl_4OMe' + Cl'$                      | 85.7  | 95.6 (95.3)                           |
| 2,4-D = [2,4-D-2-Cl] + Cl                             | 90.1  | 97.0 (96.7)                           |
| $2,4,5-T = [2,4,5-T - 5-C1]^{\bullet} + C1^{\bullet}$ | 89.5  | 96.9 (96.6)                           |

<sup>*a*</sup> For chlorophenoxyacetic acids an extrapolation scheme was applied, see Computational Methods in the main text.

**Table S3.**  $\Delta \Delta_{solv} G^0$  for C<sub>6</sub>Cl<sub>6</sub>/C<sub>6</sub>Cl<sub>6</sub><sup>--</sup> redox couple calculated at B3LYP/6-31+G(d) (or BP86/TZVP in the case of COSMO-RS) level using gas-phase geometries optimised at the same level of theory.

| Solvent model                                                                   | $\Delta\Delta_{\rm solv}G^0({\rm eV})^a$ |
|---------------------------------------------------------------------------------|------------------------------------------|
| IEFPCM-UFF                                                                      | -1.57                                    |
| SMD                                                                             | -1.52                                    |
| CPCM-UAKS                                                                       | -1.52                                    |
| COSMO-RS                                                                        | -1.61                                    |
| Exp <sup>b</sup>                                                                | -2.0                                     |
| $^{a}\Delta_{\rm solv}G^{0}({\rm anion}) - \Delta_{\rm solv}G^{0}({\rm anion})$ | $\Delta_{\rm solv} G^0$ (neutral).       |
| <sup>b</sup> Mean value of                                                      | the experimental                         |
| $\Delta \Delta_{\rm solv} G^0$ for a coup                                       | ole of symmetrical                       |

polychlorinated benzenes from J.R. Wiley, et al., J. Electroanal. Chem., 1991, 307, 169-182.

**Table S4.**  $-\Delta_{solv}G^0(anion) - \Delta_{solv}G^0(neutral)$  (kcal·mol<sup>-1</sup>) for chlorinated 1,4-benzoquinones (BQ<sup>0/-</sup>) calculated at IEFPCM-B3LYP/6-31+G(d,p) level.

| Species                        | calcd   | exp <sup><i>a</i></sup> |
|--------------------------------|---------|-------------------------|
| tetrachloro BQ                 | 50.1    | 49.2                    |
| 2,5-dichloro BQ                | 52.8    | 52.4                    |
| 2,6-dichloro BQ                | 52.9    | 52.1                    |
| <sup>a</sup> T. Heinis, S. Cho | wdhury, | S. L.                   |

<sup>a</sup> T. Heinis, S. Chowdhury, S. L. Scott and P. Kebarle, *J. Am. Chem. Soc.*, 1988, 110, 400–407.

Geometries in the gas-phase unless stated otherwise

| <b>Table 55.</b> Optimised Cartesian coordinates (A) for $C_6C_6$ obtained from DSL 1 F/0-51+O(d) of carculated |
|-----------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------|

| С  | -0.0000000 | 0.00000000  | 1.40534881  |
|----|------------|-------------|-------------|
| С  | -0.0000000 | 1.21706365  | 0.70267157  |
| С  | 0.0000000  | 1.21706365  | -0.70267157 |
| С  | 0.0000000  | -0.00000000 | -1.40534881 |
| С  | -0.0000000 | -1.21706365 | -0.70267157 |
| С  | -0.0000000 | -1.21706365 | 0.70267157  |
| Cl | 0.0000000  | 2.71884080  | 1.56968605  |
| Cl | 0.0000000  | 2.71884080  | -1.56968605 |
| Cl | 0.0000000  | 0.0000000   | -3.13944453 |
| Cl | -0.0000000 | -2.71884080 | -1.56968605 |
| Cl | -0.0000000 | -2.71884080 | 1.56968605  |
| Cl | -0.0000000 | 0.0000000   | 3.13944453  |
|    |            |             |             |

## Table S6. Optimised Cartesian coordinates (Å) for C<sub>6</sub>Cl<sub>6</sub><sup>--</sup> obtained from B3LYP/6-31+G(d) 5d calculations

| С  | -1.20943810 | 0.69166370  | -0.04242136 |
|----|-------------|-------------|-------------|
| С  | 0.0000000   | 1.39245919  | 0.06799570  |
| С  | 1.20943810  | 0.69166370  | -0.04242136 |
| С  | 1.20943810  | -0.69166370 | -0.04242136 |
| С  | -0.0000000  | -1.39245919 | 0.06799570  |
| С  | -1.20943810 | -0.69166370 | -0.04242136 |
| Cl | -0.0000000  | -3.09984104 | 0.66158485  |
| Cl | 2.73935197  | -1.60787197 | -0.32781941 |
| Cl | 2.73935197  | 1.60787197  | -0.32781941 |
| Cl | 0.0000000   | 3.09984104  | 0.66158485  |
| Cl | -2.73935197 | 1.60787197  | -0.32781941 |
| Cl | -2.73935197 | -1.60787197 | -0.32781941 |
|    |             |             |             |

#### Table S7. Optimised Cartesian coordinates (Å) for C<sub>6</sub>Cl<sub>6</sub> obtained from B2PLYPD/aug-cc-pVTZ calculations

| С  | -0.0000000 | -0.00000000 | 1.39947168  |
|----|------------|-------------|-------------|
| С  | 0.0000000  | 1.21197579  | 0.69973566  |
| С  | 0.0000000  | 1.21197579  | -0.69973566 |
| С  | 0.0000000  | 0.0000000   | -1.39947168 |
| С  | -0.0000000 | -1.21197579 | -0.69973566 |
| С  | -0.0000000 | -1.21197579 | 0.69973566  |
| Cl | 0.0000000  | 2.70475795  | 1.56158645  |
| Cl | 0.0000000  | 2.70475795  | -1.56158645 |
| Cl | 0.0000000  | 0.0000000   | -3.12318822 |
| Cl | -0.0000000 | -2.70475795 | -1.56158645 |
| Cl | -0.0000000 | -2.70475795 | 1.56158645  |
| Cl | -0.0000000 | -0.00000000 | 3.12318822  |
|    |            |             |             |

## Table S8. Optimised Cartesian coordinates (Å) for C<sub>6</sub>Cl<sub>6</sub><sup>--</sup> obtained from B2PLYPD/aug-cc-pVTZ calculations

| С  | -1.20522767 | 0.68961023  | -0.04140058 |
|----|-------------|-------------|-------------|
| С  | -0.0000000  | 1.38707153  | 0.07297029  |
| С  | 1.20522767  | 0.68961023  | -0.04140058 |
| С  | 1.20522767  | -0.68961023 | -0.04140058 |
| С  | 0.0000000   | -1.38707153 | 0.07297029  |
| С  | -1.20522767 | -0.68961023 | -0.04140058 |
| Cl | 0.0000000   | -3.06655384 | 0.69444743  |
| Cl | 2.71653791  | -1.59721041 | -0.34548886 |
| Cl | 2.71653791  | 1.59721041  | -0.34548886 |
| Cl | -0.0000000  | 3.06655384  | 0.69444743  |
| Cl | -2.71653791 | 1.59721041  | -0.34548886 |
| Cl | -2.71653791 | -1.59721041 | -0.34548886 |

| <b>Table S9.</b> Optimised Cartesian coordinates (Å) for $C_6Cl_5OMe$ obtained from B3LYP/6-31+G(d,p) | 5d |
|-------------------------------------------------------------------------------------------------------|----|
| calculations                                                                                          |    |

| С  | -0.02391644 | -0.71977512 | 1.21802546  |
|----|-------------|-------------|-------------|
| С  | -0.12177380 | 0.68025778  | 1.21183459  |
| С  | -0.16688513 | 1.38956055  | 0.0000000   |
| С  | -0.12177380 | 0.68025778  | -1.21183459 |
| С  | -0.02391644 | -0.71977512 | -1.21802546 |
| С  | 0.02811046  | -1.42091323 | -0.0000000  |
| 0  | -0.33296351 | 2.73823820  | 0.0000000   |
| С  | 0.87358984  | 3.52561421  | 0.0000000   |
| Н  | 0.54549240  | 4.56545806  | 0.0000000   |
| Н  | 1.46655095  | 3.32484643  | -0.89834331 |
| Н  | 1.46655095  | 3.32484643  | 0.89834331  |
| Cl | -0.20872390 | 1.57926997  | 2.69637498  |
| Cl | 0.03017337  | -1.57982611 | 2.72434687  |
| Cl | 0.15266021  | -3.15255935 | -0.00000000 |
| Cl | 0.03017337  | -1.57982611 | -2.72434687 |
| Cl | -0.20872390 | 1.57926997  | -2.69637498 |
|    |             |             |             |

**Table S10.** Optimised Cartesian coordinates (Å) for  $Cl^-...C_6Cl_4OMe^{\bullet}$  obtained from B3LYP/6-31+G(d,p) 5d calculations

| С  | 0.23233290  | 0.66224644  | 1.19802080  |
|----|-------------|-------------|-------------|
| С  | 0.16034207  | -0.73681623 | 1.21048444  |
| С  | 0.10252255  | -1.44906248 | -0.0000000  |
| С  | 0.16034207  | -0.73681623 | -1.21048444 |
| С  | 0.23233290  | 0.66224644  | -1.19802080 |
| С  | 0.23757015  | 1.34725972  | 0.0000000   |
| 0  | 0.04839120  | -2.82277152 | -0.00000000 |
| С  | -1.27411068 | -3.36708035 | -0.0000000  |
| Н  | -1.15627163 | -4.45362355 | -0.0000000  |
| Н  | -1.82487491 | -3.05877829 | -0.89696713 |
| Н  | -1.82487491 | -3.05877829 | 0.89696713  |
| Cl | 0.16034207  | -1.66871799 | 2.71216957  |
| Cl | 0.36223717  | 1.54249370  | 2.73254967  |
| Cl | -0.73275260 | 3.47959497  | 0.0000000   |
| Cl | 0.36223717  | 1.54249370  | -2.73254967 |
| Cl | 0.16034207  | -1.66871799 | -2.71216957 |
|    |             |             |             |

**Table S11.** Optimised Cartesian coordinates (Å) for  $Cl^-...C_6Cl_4OMe^{\bullet}$  in DMF obtained from IEFPCM-B3LYP/6-31+G(d,p) 5d calculations

| С  | -0.20389552 | -0.61854479 | 1.20538740  |
|----|-------------|-------------|-------------|
| С  | -0.14657709 | 0.78523698  | 1.21489787  |
| С  | -0.10365474 | 1.49439692  | -0.0000000  |
| С  | -0.14657709 | 0.78523698  | -1.21489787 |
| С  | -0.20389552 | -0.61854479 | -1.20538740 |
| С  | -0.21796549 | -1.28346368 | 0.0000000   |
| 0  | -0.09771286 | 2.85988503  | -0.0000000  |
| С  | 1.21000605  | 3.47521154  | -0.0000000  |
| Н  | 1.03244558  | 4.55097822  | -0.0000000  |
| Н  | 1.76854710  | 3.19099757  | -0.89696227 |
| Н  | 1.76854710  | 3.19099757  | 0.89696227  |
| Cl | -0.14657709 | 1.69781184  | 2.70793728  |
| Cl | -0.28585381 | -1.51054885 | 2.72159467  |
| Cl | 0.57589237  | -3.78212766 | 0.0000000   |
| Cl | -0.28585381 | -1.51054885 | -2.72159467 |
| Cl | -0.14657709 | 1.69781184  | -2.70793728 |
|    |             |             |             |

| Table S12.   | Optimised | Cartesian | coordinates | (Å) for | C <sub>6</sub> Cl <sub>5</sub> OMe <sup>-</sup> | obtained fr | om B3LYP/ | 6-31+G(d,p) 5d |
|--------------|-----------|-----------|-------------|---------|-------------------------------------------------|-------------|-----------|----------------|
| calculations | 3         |           |             |         |                                                 |             |           |                |

| С  | 1.29557354  | -0.59808304 | -0.06873044 |
|----|-------------|-------------|-------------|
| С  | 0.14293788  | -1.41153107 | -0.04457697 |
| С  | -1.12721285 | -0.85103374 | -0.12382321 |
| С  | -1.23983203 | 0.54910313  | -0.16040046 |
| С  | -0.10526395 | 1.35635846  | 0.02198451  |
| С  | 1.15308657  | 0.78343161  | 0.03756986  |
| 0  | -2.23422722 | -1.67175001 | -0.18195368 |
| С  | -3.10474220 | -1.60360972 | 0.94819573  |
| Н  | -3.93219628 | -2.28545947 | 0.73491925  |
| Н  | -3.49448151 | -0.59041624 | 1.09477781  |
| Н  | -2.58441239 | -1.93503848 | 1.85679704  |
| Cl | 0.28818867  | -3.16995126 | 0.31577384  |
| Cl | 2.87405902  | -1.32385233 | -0.55667645 |
| Cl | 2.63358378  | 1.82306128  | 0.25902490  |
| Cl | -0.33821642 | 3.09430173  | 0.51272683  |
| Cl | -2.76363704 | 1.27274061  | -0.87744788 |
|    |             |             |             |

**Table S13.** Optimised Cartesian coordinates (Å) for  $C_6Cl_4OMe^{\circ}$  obtained from B3LYP/6-31+G(d,p) 5d calculations

| С  | -0.11493729 | -1.13716880 | 1.22610932  |
|----|-------------|-------------|-------------|
| С  | -0.07568602 | 0.27045850  | 1.22400255  |
| С  | -0.05253562 | 0.97242990  | 0.0000000   |
| С  | -0.07568602 | 0.27045850  | -1.22400255 |
| С  | -0.11493729 | -1.13716880 | -1.22610932 |
| С  | -0.12913927 | -1.74846376 | -0.0000000  |
| 0  | -0.08531147 | 2.33231341  | 0.0000000   |
| С  | 1.19374528  | 2.99460944  | 0.0000000   |
| Н  | 0.97218270  | 4.06229276  | 0.0000000   |
| Н  | 1.76393866  | 2.73531138  | -0.89819223 |
| Н  | 1.76393866  | 2.73531138  | 0.89819223  |
| Cl | -0.07568602 | 1.16645388  | 2.71276355  |
| Cl | -0.14791724 | -2.08122896 | 2.68770552  |
| Cl | -0.14791724 | -2.08122896 | -2.68770552 |
| Cl | -0.07568602 | 1.16645388  | -2.71276355 |
|    |             |             |             |

#### Table S14. Optimised Cartesian coordinates (Å) for 2,4-D obtained from B3LYP/6-31+G(d,p) 5d calculations

| Cl | -0.50848095 | 2.86302027  | 0.15752398  |
|----|-------------|-------------|-------------|
| Cl | -3.93160147 | -1.34922283 | 0.13975714  |
| С  | 0.29660606  | 0.29080315  | -0.30600268 |
| С  | -0.78395632 | 1.14701355  | -0.02087965 |
| С  | -2.07669185 | 0.64829959  | 0.11724038  |
| С  | -2.30052619 | -0.72119669 | -0.03203898 |
| С  | -1.24821431 | -1.58775216 | -0.31240431 |
| С  | 0.04601424  | -1.07839444 | -0.44514797 |
| С  | 2.63301553  | 0.11452589  | -0.83140815 |
| С  | 3.24414710  | -0.69207988 | 0.31072593  |
| Н  | 4.69986828  | -1.86350596 | 0.61399823  |
| Н  | -2.89463241 | 1.32427797  | 0.33614530  |
| Н  | -1.42728718 | -2.65170291 | -0.41890328 |
| Н  | 0.85571822  | -1.77055805 | -0.64246165 |
| Н  | 2.40509024  | -0.55276093 | -1.67267192 |
| Н  | 3.38458812  | 0.83118259  | -1.17612554 |
| 0  | 2.85819760  | -0.71966157 | 1.45387909  |
| 0  | 4.31988871  | -1.38236890 | -0.14102860 |
| 0  | 1.52137497  | 0.87968008  | -0.43463394 |
|    |             |             |             |

| Table S15. Optimised Cartesian coordinates (Å) for [2,4-D | - 2-Cl] obtained from B3LYP/6-31+G(d,p) 5d |
|-----------------------------------------------------------|--------------------------------------------|
| calculations                                              |                                            |

| Cl | -3.89188434 | -1.43618164 | 0.16565154  |
|----|-------------|-------------|-------------|
| С  | 0.36290453  | 0.14136035  | -0.42313398 |
| С  | -0.73371761 | 0.96489395  | -0.22187202 |
| С  | -2.03073492 | 0.56382192  | -0.03711154 |
| С  | -2.25925971 | -0.82446415 | -0.05891873 |
| С  | -1.20433871 | -1.71292132 | -0.25404033 |
| С  | 0.10205625  | -1.23798026 | -0.43278059 |
| С  | 2.69788725  | -0.06643317 | -0.92095613 |
| С  | 3.30770271  | -0.75772332 | 0.29517662  |
| Н  | 4.75508171  | -1.90428939 | 0.71209433  |
| Н  | -2.84507736 | 1.26471045  | 0.11644552  |
| Н  | -1.39227458 | -2.78076595 | -0.26005113 |
| Н  | 0.90157996  | -1.96018640 | -0.56100293 |
| Н  | 2.47164705  | -0.81416029 | -1.69235888 |
| Н  | 3.45167262  | 0.61112750  | -1.33356386 |
| 0  | 2.92824247  | -0.66517574 | 1.43716920  |
| 0  | 4.37621118  | -1.50026763 | -0.08733394 |
| 0  | 1.58490441  | 0.73327223  | -0.60396146 |
|    |             |             |             |

Table S16. Optimised Cartesian coordinates (Å) for 2,4,5-T obtained from B3LYP/6-31+G(d,p) 5d calculations

| С  | 0.0000000   | 0.49583023  | 0.0000000   |
|----|-------------|-------------|-------------|
| С  | 1.40298201  | 0.35490965  | 0.0000000   |
| С  | 1.98159988  | -0.90773674 | 0.0000000   |
| С  | 1.18620446  | -2.05911985 | 0.0000000   |
| С  | -0.20458031 | -1.92749346 | 0.0000000   |
| С  | -0.79116936 | -0.65644517 | 0.0000000   |
| 0  | -0.48864760 | 1.76353517  | 0.0000000   |
| С  | -1.88657031 | 1.94658518  | 0.0000000   |
| С  | -2.17860366 | 3.43861814  | 0.0000000   |
| 0  | -1.37377073 | 4.33505170  | 0.0000000   |
| 0  | -3.52225229 | 3.62406536  | 0.0000000   |
| Cl | 2.41919959  | 1.77014207  | 0.0000000   |
| Cl | 1.96774636  | -3.61924199 | 0.0000000   |
| Cl | -1.25616867 | -3.32053702 | 0.0000000   |
| Н  | -2.35456431 | 1.50175431  | 0.88916335  |
| Н  | -2.35456431 | 1.50175431  | -0.88916335 |
| Н  | -3.68561688 | 4.58245411  | 0.0000000   |
| Н  | 3.06105828  | -1.00210431 | 0.0000000   |
| Н  | -1.87133789 | -0.59213614 | 0.0000000   |
|    |             |             |             |

**Table S17.** Optimised Cartesian coordinates (Å) for [2,4,5-T-5-C1] obtained from B3LYP/6-31+G(d,p) 5d calculations

| С  | -0.09552207 | -0.16868986 | 0.0000000   |
|----|-------------|-------------|-------------|
| С  | 0.78554377  | 0.93581733  | 0.0000000   |
| С  | 2.16814375  | 0.76294347  | 0.0000000   |
| С  | 2.70998297  | -0.53160833 | 0.0000000   |
| С  | 1.82247533  | -1.57617552 | 0.0000000   |
| С  | 0.44956364  | -1.46778705 | 0.0000000   |
| 0  | -1.42583529 | 0.10836882  | 0.0000000   |
| С  | -2.33488550 | -0.96875611 | 0.0000000   |
| С  | -3.74876460 | -0.40994278 | 0.0000000   |
| 0  | -4.06992934 | 0.75112635  | 0.0000000   |
| 0  | -4.62983533 | -1.44156263 | 0.0000000   |
| Cl | 0.13130237  | 2.55374237  | 0.0000000   |
| Cl | 4.44384052  | -0.77795075 | 0.0000000   |
| Н  | -2.21282348 | -1.60278078 | 0.88924498  |
| Н  | -2.21282348 | -1.60278078 | -0.88924498 |
| Н  | -5.52481845 | -1.06184917 | 0.0000000   |
| Н  | 2.81976559  | 1.63030516  | 0.0000000   |
| Н  | -0.18115090 | -2.34961977 | 0.0000000   |
|    |             |             |             |

**Table S18.** Optimised Cartesian coordinates (Å) for 2,4-D adduct with a DMF molecule obtained from B3LYP/6-31+G(d,p) 5d calculations

| Cl | -0.60125868 | 2.88575885  | -0.01271610 |
|----|-------------|-------------|-------------|
| Cl | -4.03445097 | -1.32001083 | -0.00686140 |
| С  | 0.21323358  | 0.30057475  | -0.38346606 |
| С  | -0.87504353 | 1.16450721  | -0.15178753 |
| С  | -2.17278317 | 0.67328890  | -0.03566602 |
| С  | -2.39596783 | -0.69921695 | -0.15266040 |
| С  | -1.33858202 | -1.57481595 | -0.38083367 |
| С  | -0.03997413 | -1.07222485 | -0.49279467 |
| С  | 2.56931486  | 0.08702747  | -0.79035387 |
| С  | 3.10171986  | -0.68720883 | 0.41624237  |
| H  | 4.51769007  | -1.92461738 | 0.86873655  |
| Н  | -2.99438638 | 1.35701975  | 0.14154534  |
| H  | -1.51769349 | -2.64088946 | -0.46481929 |
| Н  | 0.77335497  | -1.76987318 | -0.65126990 |
| Н  | 2.38579111  | -0.60384583 | -1.62256907 |
| Н  | 3.34588215  | 0.78725587  | -1.11102546 |
| 0  | 2.63516320  | -0.60657766 | 1.53896138  |
| 0  | 4.14190113  | -1.43403347 | 0.06466301  |
| 0  | 1.43839849  | 0.88055545  | -0.49793586 |
| С  | 4.54800263  | -2.47959799 | 3.22600009  |
| 0  | 5.11441499  | -2.69592308 | 2.14023770  |
| N  | 4.92023752  | -3.02834895 | 4.39725939  |
| Н  | 3.68295080  | -1.80428332 | 3.28310880  |
| С  | 4.20789820  | -2.72795010 | 5.63217999  |
| Н  | 3.38984789  | -2.03417363 | 5.42710862  |
| Н  | 3.79194226  | -3.64389320 | 6.06797105  |
| H  | 4.88377556  | -2.26913608 | 6.36331393  |
| С  | 6.05260375  | -3.94444300 | 4.47570979  |
| Н  | 6.47574356  | -4.06394369 | 3.47875846  |
| Н  | 6.81598813  | -3.54375867 | 5.15259486  |
| Н  | 5.72405077  | -4.91932545 | 4.85409183  |

# Table S19. Optimised Cartesian coordinates (Å) for H-bonded dimer of 2,4-D obtained from B3LYP/6-31+G(d,p) 5d calculations

| Cl | -0.54595861 | -1.17290964 | -1.54133255  |
|----|-------------|-------------|--------------|
| Cl | 3.28101486  | -4.92786584 | -0.69583222  |
| С  | -0.85682601 | -3.79970464 | -2.23495943  |
| С  | -0.00844182 | -2.83032933 | -1.66707524  |
| С  | 1.25665150  | -3.17243840 | -1.19656027  |
| С  | 1.68600693  | -4.49726947 | -1.29024502  |
| С  | 0.86565593  | -5.47307174 | -1.84854824  |
| С  | -0.40118456 | -5.11965503 | -2.32061233  |
| С  | -3.01160949 | -4.28305917 | -3.17469758  |
| С  | -2.73980659 | -4.66996355 | -4.62432028  |
| Н  | -3.44528890 | -5.78135569 | -6.02673656  |
| Н  | 1.89395886  | -2.41153239 | -0.76206457  |
| Н  | 1.20670419  | -6.49949102 | -1.92318114  |
| Н  | -1.01985842 | -5.89072594 | -2.76427600  |
| Н  | -3.09776439 | -5.19127778 | -2.56509738  |
| Н  | -3.98221486 | -3.77811936 | -3.14527695  |
| 0  | -1.82721414 | -4.18887143 | -5.28932130  |
| 0  | -3.61440561 | -5.55680144 | -5.06038586  |
| 0  | -2.08170066 | -3.36549734 | -2.65379437  |
| 0  | -1.33219810 | -4.74504173 | -7.83002403  |
| 0  | -3.11939826 | -6.11296102 | -7.60109274  |
| Cl | -4.40064625 | -9.12893086 | -11.34908158 |
| Cl | -8.22759273 | -5.37395922 | -12.19463559 |
| С  | -4.08977163 | -6.50213395 | -10.65546504 |
| С  | -4.93815561 | -7.47150771 | -11.22335224 |
| С  | -6.20324299 | -7.12939457 | -11.69388019 |
| С  | -6.63259244 | -5.80456080 | -11.60020608 |

| С | -5.81224139 | -4.82875993 | -11.04190048 |
|---|-------------|-------------|--------------|
| С | -4.54540703 | -5.18218079 | -10.56982304 |
| С | -1.93499322 | -6.01878551 | -9.71571175  |
| С | -2.20680029 | -5.63187577 | -8.26609111  |
| Н | -1.50131871 | -4.52048252 | -6.86367515  |
| Н | -6.84055031 | -7.89029949 | -12.12837784 |
| Н | -6.15328501 | -3.80233849 | -10.96727596 |
| Н | -3.92673321 | -4.41111084 | -10.12615772 |
| Н | -1.84883259 | -5.11056908 | -10.32531447 |
| Н | -0.96438959 | -6.52372898 | -9.74512671  |
| 0 | -2.86490306 | -6.93634547 | -10.23661664 |
|   |             |             |              |

**Table S20.** Optimised Cartesian coordinates (Å) for 2,4,5-T adduct with a DMF molecule obtained from B3LYP/6-31+G(d,p) 5d calculations

| Cl | 1.17462219  | 3.00998663  | 0.0000000   |
|----|-------------|-------------|-------------|
| Cl | -3.94305156 | 4.75952010  | 0.0000000   |
| С  | -0.96161196 | 1.30123721  | 0.0000000   |
| С  | -0.53052352 | 2.64477551  | 0.0000000   |
| С  | -1.45369920 | 3.68212719  | 0.0000000   |
| С  | -2.82749390 | 3.41607507  | 0.0000000   |
| С  | -3.26433166 | 2.08932948  | 0.0000000   |
| С  | -2.33640451 | 1.04166745  | 0.0000000   |
| С  | -0.39373159 | -1.01154959 | 0.0000000   |
| С  | 0.84927222  | -1.89399923 | 0.0000000   |
| Н  | 1.30164283  | -3.77440335 | 0.0000000   |
| Н  | -1.10651555 | 4.70857348  | 0.0000000   |
| Н  | -2.71001764 | 0.02630460  | 0.0000000   |
| Н  | -0.99100579 | -1.25419042 | 0.88910531  |
| H  | -0.99100579 | -1.25419042 | -0.88910531 |
| 0  | 1.99346895  | -1.48184639 | 0.0000000   |
| 0  | 0.48612221  | -3.17220174 | 0.0000000   |
| 0  | 0.0000000   | 0.34747835  | 0.0000000   |
| С  | 3.69228517  | -4.15056553 | 0.0000000   |
| 0  | 2.59033389  | -4.72672071 | 0.0000000   |
| N  | 4.87916637  | -4.78559181 | 0.0000000   |
| H  | 3.75205588  | -3.05326533 | 0.0000000   |
| С  | 6.13269128  | -4.04325474 | 0.0000000   |
| H  | 5.92662061  | -2.97081248 | 0.0000000   |
| H  | 6.72397367  | -4.28822259 | 0.89012218  |
| Н  | 6.72397367  | -4.28822259 | -0.89012218 |
| С  | 4.95599938  | -6.24212773 | 0.0000000   |
| H  | 3.94394039  | -6.64585224 | 0.0000000   |
| Н  | 5.49047886  | -6.59202095 | -0.89075704 |
| Н  | 5.49047886  | -6.59202095 | 0.89075704  |
| Cl | -4.96350564 | 1.68587559  | 0.0000000   |

Table S21. Optimised Cartesian coordinates (Å) for H-bonded dimer of 2,4,5-T obtained from B3LYP/6-31+G(d,p) 5d calculations

| Cl | -5.38703148  | -3.00545732 | 0.0000000   |
|----|--------------|-------------|-------------|
| Cl | -10.02253835 | -0.21973781 | 0.0000000   |
| Cl | -8.33083013  | 2.54039945  | 0.0000000   |
| 0  | -4.10831837  | -0.39317772 | 0.0000000   |
| 0  | -1.45100815  | -0.75764929 | 0.0000000   |
| 0  | -1.09531700  | 1.47641201  | 0.0000000   |
| С  | -5.46210131  | -0.27180820 | 0.0000000   |
| С  | -6.20799257  | -1.46806527 | 0.0000000   |
| С  | -7.59634788  | -1.42984442 | 0.0000000   |
| С  | -8.27792468  | -0.20768046 | 0.0000000   |
| С  | -7.54558073  | 0.98216908  | 0.0000000   |
| С  | -6.14612376  | 0.94698755  | 0.0000000   |
| С  | -3.32721059  | 0.78018394  | 0.0000000   |
| С  | -1.85711296  | 0.39821560  | 0.0000000   |
| Н  | -8.15777345  | -2.35663092 | 0.0000000   |
| Н  | -3.51878127  | 1.39733827  | -0.88875868 |
|    |              |             |             |

| Н  | -3.51878127 | 1.39733827  | 0.88875868  |
|----|-------------|-------------|-------------|
| Cl | 5.38703148  | 3.00545732  | 0.0000000   |
| Cl | 10.02253835 | 0.21973781  | 0.0000000   |
| Cl | 8.33083013  | -2.54039945 | 0.0000000   |
| 0  | 4.10831837  | 0.39317772  | 0.0000000   |
| 0  | 1.45100815  | 0.75764929  | 0.0000000   |
| 0  | 1.09531700  | -1.47641201 | 0.0000000   |
| С  | 5.46210131  | 0.27180820  | 0.0000000   |
| С  | 6.20799257  | 1.46806527  | 0.0000000   |
| С  | 7.59634788  | 1.42984442  | 0.0000000   |
| С  | 8.27792468  | 0.20768046  | 0.0000000   |
| С  | 7.54558073  | -0.98216908 | 0.0000000   |
| С  | 6.14612376  | -0.94698755 | 0.0000000   |
| С  | 3.32721059  | -0.78018394 | 0.0000000   |
| С  | 1.85711296  | -0.39821560 | 0.0000000   |
| Н  | 8.15777345  | 2.35663092  | 0.0000000   |
| Н  | 3.51878127  | -1.39733827 | 0.88875868  |
| Н  | 3.51878127  | -1.39733827 | -0.88875868 |
| Н  | 5.61148175  | -1.88780249 | 0.0000000   |
| Н  | -5.61148175 | 1.88780249  | 0.0000000   |
| Н  | 0.12100221  | -1.22475505 | 0.0000000   |
| Н  | -0.12100221 | 1.22475505  | 0.0000000   |
|    |             |             |             |