SUPPORTING INFORMATION.

SANS Study on Solvated Structure and Molecular Interactions of a Thermo-responsive Polymer in a Room Temperature Ionic Liquid.

Kazu Hirosawa, ¹ Kenta Fujii, ^{2*} Takeshi Ueki, ³ Yuzo Kitazawa, ⁴ Kenneth C Littrell⁵,

Masayoshi Watanabe⁴ and Mitsuhiro Shibayama^{1*}

¹ Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan. ² Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan. ³ Polymer Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan. ⁴ Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan ⁵ Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee, 37831 USA Table S1

K. Hirosawa et al.

The obtained density values of $[C_2mIm^+][TFSA^-]$, d_8 - $[C_2mIm^+][TFSA^-]$, PhEtMA (monomer) at 298 K.

Component	Density [g cm ⁻³]
[C ₂ mIm ⁺][TFSA ⁻]	1.5180
d_8 -[C ₂ mIm ⁺][TFSA ⁻]	1.5512
PhEtMA	1.0174

Figure S1.

K. Hirosawa et al.

Concentration dependence of the reduced viscosities (η_{red}) of PBnMA ($M_n = 40 \text{ kDa}, M_w/M_n = 1.12$) / [C₂mIm⁺][TFSA⁻] solutions. The intrinsic viscosities ([η]) were obtained by extrapolating η_{red} to c = 0 (solid line). The c^* was estimated to be approximately 100 mg mL⁻¹.

Figure S2.

K. Hirosawa et al.

The comparison of the temperature dependence of the effective interaction parameter, χ_{eff} of PPhEtMA in [C₂mIm⁺][TFSA⁻] solution obtained from curve fitting by eq. (3) with that calculated from the second virial coefficient, A_2 by following equation;

$$A_2 = \frac{V_0}{2m^2} \left(1 - 2\chi_{\text{eff}}\right), \ \left(m \equiv \frac{M}{v_1/v_0}\right)$$

where V_0 and M are the molar volume of the solvent and the molecular weight of polymer, respectively. v_1 and v_0 are the volumes of the polymer and of the solvent, respectively. A_2 value can be obtained by Zimm plot. Figure S3.

K. Hirosawa *et al*.

Temperature dependence of the radius of gyration (R_g) of dispersed PPhEtMA chains in d_8 -[C₂mIm⁺][TFSA⁻] solution (c = 16 mg mL⁻¹) obtained from a curve fitting for SANS profiles at various temperatures. We use Eq. 3 at T < 307 K and Eq. 4 at T = 310 K as a fitting function.