Reaction Mechanism for the SCR Process on monomer V⁵⁺ sites and Effect of Modified Brønsted Acidity

Logi Arnarson^{1,2} Hanne Falsig², Søren B. Rasmussen², Jeppe V. Lauritsen¹ and Poul Georg Moses² ¹Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark

²Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kongens Lyngby, Denmark

Supporting Information

1. Cartesian coordinates of initial state structure $VO_3H/TiO2(001)$

Positions:

0 Ti	1.8700	1.8777	12.9420
1 Ti	0.0000	1.9050	10.5954
2 Ti	1.7298	-0.0137	15.2908
30	0.0000	0.0000	10.0838
4 O	1.4437	1.8918	14.8298
50	-0.0267	1.8938	12.5224
60	1.9485	-0.0246	13.3449
7 O	1.9050	1.9050	10.9977
8 O	0.0480	-0.1779	16.0255
9 Ti	1.9165	5.6888	12.9490
10 Ti	0.0000	5.7150	10.5954
11 Ti	1.7920	3.7635	15.2970
12 O	0.0000	3.8100	10.0838
13 0	2.0050	5.6918	14.9574
14 O	0.0020	5.7010	12.5596
15 O	1.9801	3.7951	13.3593
16 O	1.9050	5.7150	10.9977
17 O	0.0404	3.9646	15.9645
18 Ti	5.6920	1.8661	13.0703
19 Ti	3.8100	1.9050	10.5954
20 Ti	5.9313	0.0036	15.6751
21 O	3.8100	0.0000	10.0838
22 O	5.6908	1.9098	15.0310
23 O	3.8288	1.8911	12.5730
24 O	5.7618	-0.0388	13.5282
25 O	5.7150	1.9050	10.9977
26 O	3.1475	0.4714	16.2517
27 Ti	5.6974	5.7375	12.9966
28 Ti	3.8100	5.7150	10.5954
29 Ti	5.9410	3.8996	15.5387
30 O	3.8100	3.8100	10.0838
31 O	5.4961	5.7364	15.2634
32 O	3.8286	5.7106	12.5335
33 O	5.7765	3.8668	13.5521
34 O	5.7150	5.7150	10.9977
35 O	3.2714	3.2738	16.1955
36 V	4.0198	1.8241	17.2781
37 O	-2.1998	0.5962	17.3505
38 O	10.8847	1.8372	18.7441
39 O	5.4353	3.3261	17.4048
40 H	6.2035	3.0655	17.9415

2. Frequencies (given in cm⁻¹) used to calculate the Gibbs free energy. The frequencies were calculated for atoms marked in black.

 $\begin{array}{l} VO_{3}H *+ NH_{3}(g) \rightarrow NH_{4}^{+} VO_{3}^{-} * \\ \mathrm{H:} \ [491.5,806.6,3647.8] \\ \mathrm{NH_{4}^{+:}} \\ [90.5,119.0,187.7,254.4,304.3,426.8,1410.2,1486.0,1508.9,1699.1,1722.9,3012.0,3073.8,3426.4,35 \\ 25.5] \\ NH_{4}^{+} VO_{3}^{-} *+ NO(g) \rightarrow NO \ NH_{3} VO_{3}H * \end{array}$

NO NH₃: [95.0,135.4,192.2,236.9,416.1,576.7,1042.5,1603.4,1634.4,3386.5,3538.8,3585.0,25.2,65.0,90.3,10 7.4,347.4,1834.0,491.5,806.6,3647.8]

 $NO NH_3 VO_3H * \rightarrow (ONNH_2 \cdots H \cdots VO_3H *) \rightarrow H_2NNO VO_3H_2 *$

ONNH₂^{...}H H: [491.5,806.6,3647.8,14.1,35.9,73.1,83.0,145.1,384.6,423.5,476.6,629.6,970.2,1054.2,1425.4,1467.9 ,1556.8,1609.6,3405.0,3518.2]

H₂NNO H:

 $\begin{matrix} [27.0, 57.7, 66.8, 85.5, 150.4, 522.3, 624.8, 665.4, 750.5, 850.6, 1073.5, 1217.3, 1524.5, 1598.4, 3326.0, 348, 5.7, 3646.8, 491.5, 806.6, 3647.8 \end{matrix}$

 $H_2NNO\,VO_3H_2* {\rightarrow} VO_3H_2* {+} N_2(g) + H_2O(g)$

H₂: [391.1,796.1,3646.3,491.5,806.6,3647.8]

3. PDOS for V, Mo and W as substitutional dopants.

When V is substitutional doped at the Brønsted acid site (Figure 1 a)-d)) it is reduced to oxidation state +4 and it is the V atom in the active site that is redox active as it changes oxidation state from +5 to +4 during the reduction.

When Mo and W are substitutional doped at Brønsted acid site (Figure 1 e)-h) and i)-l) respectively) they become the redox active sites changes oxidation states whereas the V atom in the active site remains in the same oxidation state.

Figure 1: PDOS for s, p and d orbitals of V in the active site (blue) and a)-d)V, e)-h)Mo and i)-l) W as substitution for states A, B, D and F (purple).

When V is substitutional doped at the H accepting site (Figure 2 a)-d)) both V atoms are partially reduced in states A,B and D. In the reduced state the V atom of the active site is reduced to +4 and the V atom in the TiO_2 lattice aswell.

When Mo and W are substitutional doped at H accepting site (Figure 2 e)-h) and i)-l) respectively) they become the redox active sites changes oxidation states whereas the V atom in the active site remains in the same oxidation state

Figure 2: PDOS for s, p and d orbitals of V in the active site (blue) and a)-d)V, e)-h)Mo and i)-l) W as substitution for states A, B, D and F (green).