Electronic Supplementary Information for: Non-covalent adsorption of Amino Acid Analogues on Noble-metal Nanoparticles: Influence of Edges and Vertices

Z. E. Hughes^a and Tiffany R. Walsh^{*a}

a Institute for Frontier Materials, Deakin University, Geelong, 3216, VIC, Australia; Email: tiffany.walsh@deakin.edu.au

Contents

Table S1: Out-of-plane displacements for the facets of Au_{147} calculated using a range of functionals.

Table S2: Inter-plane spacings calculated for Au_{147} .

Figure S1: Summary of site locations on the NM₁₄₇ NP.

Figure S2: Difference between the atop3 and vertex adsorption configurations on the NM_{147} NP.

Table S3: Distances between the adsorbates and the NM_{147} NP surface for the optimal geometries on the facets, edge and vertex sites.

Table S4: Adsorption energies of water at different sites on Au_{147} .

Table S5: Adsorption energies of methane at different sites on Au_{147} .

Table S6: Adsorption energies of benzene at different sites on Au_{147} .

Figure S3: Comparison of adsorption energies at the $\{111\}$ facet with those at edge and vertex sites for Pt_{147} .

Figure S4: Optimised geometries of methane on Au₁₄₇.

Figure S5: Optimised geometries of benzene on Au₁₄₇.

Figure S6: Optimised geometries of water on the $\{111\}$ facet of Au₁₄₇.

Figure S7: Optimised geometries of water on the $\{100\}$ facet, edge and vertex sites of Au₁₄₇.

Figure S8: Isosurface plots of representative bonding orbitals of methanamine adsorbed on Au_{147} .

Figure S9: Interfacial water structuring averaged from molecular dynamics simulations of Au_{147} under aqueous conditions.

Table S7: Adsorption energies of all adsorbates on the $\{111\}$ and $\{100\}$ facets of Au₁₄₇ and the corresponding infinite planar surfaces. Experimental data, where available, are also presented.

Table S8: Adsorption energies of adsorbates on the Pt_{147} {111} facet and the Pt(111) infinite planar surface. Experimental data, where available, are also presented.

Table S9: Adsorption energies for methane and water adsorbed at different sites on the Au_{147} NP calculated using a range of plane wave cutoffs.

References

Table S1: Out-of-plane displacements (Å) for centre-of-facet atom(s) calculated for Au_{147} using different functionals.

Functional	Buckling / Å	
	{111}	{100}
PBE	0.44	0.32
revPBE	0.45	0.32
revPBE-vdW-DF	0.45	0.38
PBEsol	0.37	0.29

Table S2: Inter-plane spacings of Au₁₄₇ in the <111> and <100> directions calculated using the revPBE-vdW-DF functional. The central layer is labelled as 0.

Layer	Distance / Å			
	<111>	<100>		
d_{01}	2.4671	2.0797		
d_{12}	2.3510	2.0940		
d_{23}	2.2114	2.0847		

Figure S1: Different sites of the NM_{147} cuboctahedral NPs on the (a) {111} facet, and (b) {100} facet.

Figure S2: Example of the difference between the adsorption configuration of the $\{111\}$ -atop3 site and vertex site of the NM₁₄₇ cuboctahedral NP.

Table S3: Distance between the absorbates and NMNPs, d_{sep} , for the optimal geometries at the facets, edge and vertex sites. For hetroatomic adsorbates the distance corresponds to that between the hetroatom and the nearest metal atom. For the hydrocarbons the distance given is defined as that between the centre of mass of the carbon atoms and the surface, for the facets, or the closest one/two metal atoms for the vertex/edge.

Adsorbate	Metal	d _{sep} / Å			
		{111}	{100} [^]	Edge	Vertex
Methane	Au	3.79	3.72	3.56	3.58
	Pt	3.83	3.77	3.67	3.48
Ethane	Au	3.95	3.82	3.77	3.63
	Pd	3.87	3.89	3.79	3.55
Benzene	Au	3.55	3.40	3.13	3.03
	Pd	3.47	2.11	2.32	2.69
Water	Au	3.02	2.86	2.85	2.63
	Pt	2.77	2.63	2.52	2.38
Methanol	Au	2.87	2.79	2.73	2.53
	Pt	2.59	2.48	2.41	2.31
Methanamide	Au	2.75	2.62	2.58	2.40
	Pt	2.41	2.30	2.27	2.41
Methanamine	Au	2.45	2.37	2.37	2.31
	Pt	2.24	2.21	2.22	2.19
Imidazole	Au	2.36	2.31	2.29	2.23
	Pt	2.14	2.17	2.14	2.14
Dimethyl	Au	2.66	2.60	2.54	2.49
Sulphide	Pt	2.35	2.39	2.34	2.34

Facet	Site	$E_{\rm ad}$	$E_{\rm ads}$ / kJ mol ⁻¹	
		Au ₁₄₇	Planar surface	
(111)	atop1	-15.6	-18.3 ^a	
	atop2	-17.0		
	atop3	-20.5		
	bri	-14.2	-16.3	
	fcc	-12.6	-16.5	
	hcp1	-12.7	-16.4	
	hcp2	-12.8		
(100)	atop1	-19.0	-20.8 ^a	
	atop2	-18.1		
	atop3	-19.4		
	bri	-15.2	-17.7 ^a	
	hol1	-15.9	-15.1 ^a	
Edge	atop	-17.7		
Vertex	atop	-20.8		

Table S4: Adsorption energies, E_{ads} , of water on the Au(111) and Au(100) infinite planar surfaces and the {111} and {100} facets of Au₁₄₇.

^{*a*} Ref¹

Table S5: Adsorption energies, E_{ads} , of methane at different sites on Au₁₄₇. Adsorption energies at corresponding sites on the infinite surface are given in parentheses.

Facet	Site	$E_{\rm ads}$ / kJ mol ⁻¹
(111)	fcc	-11.9 (-16.5 ^{<i>a</i>})
(111)	hcp1	-11.7
(111)	hcp2	-10.5
(100)	hol1	-13.9 (-16.3 ^{<i>a</i>})
(100)	hol2	-13.2
(100)	hol3	-12.4
Edge	atop	-10.1
Vertex	atop	-7.7

^{*a*} Ref¹

Table S6: Adsorption energies, E_{ads} , of benzene at different sites on Au₁₄₇. Where applicable the adsorption energy at each corresponding site on the infinite planar Au(111) and Au(100) surfaces is given in parentheses.

Facet	Site	$E_{ m ads}$ / kJ mol ⁻¹
{111}	atop1:0°c	-36.5 (-54.0 ^{<i>a</i>})
{111}	atop1:30° ^d	$-36.2(-53.5^{a})$
{111}	fcc:0°c	$-39.2(-56.3^{a})$
{111}	fcc:30°d	-39.2 (-56.5 ^{<i>a</i>})
{100}	hol1	-48.1 (-57.9 ^b)
Edge	atop	-33.4
Edge	bri	-40.8
Vertex	atop	-38.7
Vertex	$perp^d$	-11.3

^{*a*} Ref²; ^{*b*} Ref¹; ^{*c*} 0° : C-C bonds aligned along direction of atoms; ^{*d*} 30° : C-C bonds aligned along direction of hollow sites; ^{*e*} plane of ring parallel of vertex atom.

Figure S3: Comparison of adsorption energies on the $\{111\}$ facet against the edge and vertex sites of the Pt₁₄₇ cuboctahedral NP. The labels for the different molecules are: A-methanamide, B-methanamine, C-imidazole and D-dimethyl sulphide, E-benzene.

Figure S4: Optimised geometries of methane adsorbed on Au_{147} : (a) {111} facet - fcc, (b) {111} facet - hcp1, (c) {111} facet - hcp2, (d) {100} facet - hol1, (e) {100} facet - hol2, (f) {100} facet - hol3, (g) edge, and (h) vertex.

Figure S5: Optimised geometries of benzene adsorbed on Au₁₄₇: (a) {111} facet - atop1:0°, (b) {111} facet - atop1:30°, (c) {111} facet - fcc0°, (d) {111} facet - fcc30°, (e) {100} facet - hol1, (f) edge - atop, (g) edge - bri, (h) vertex - atop and (i) vertex - perpendicular.

Figure S6: Optimised geometries of water adsorbed on $\{111\}$ facet of Au₁₄₇: (a) atop1, (b) atop2, (c) atop3, (d) bri, (e) fcc, (f) hcp1.

Figure S7: Optimised geometries of water adsorbed on Au_{147} : (a) {100} facet - atop1, (b) {100} facet - atop3, (c) {100} facet - bri, (d) {100} facet - hol1, (e) edge and (f) vertex.

Figure S8: Isosurfaces of representative bonding orbitals for the adsorption of methanamine for (a) on the $\{111\}$ facet and (b) the vertex of Au₁₄₇.

Figure S9: Interfacial water structuring averaged from molecular dynamics simulations of Au_{147} under aqueous conditions using CHARMM-METAL. A cross-section of the central region of the NP is shown. Red and blue colors indicate regions of highest and lowest density respectively.

Table S7: Energies, E_{ads} , of molecules adsorbed to the {111} and {100} facets of Au₁₄₇, and at corresponding sites on the infinite planar Au(111) and Au(100) surfaces. Experimental data for planar surfaces and nanoparticle surfaces are also presented for comparison; "-" signifies that no reliable experimental data were available.

Molecule	$E_{\rm ads}$ / kJ mol ⁻¹				
		(111)	(100)		Expt.
	Au ₁₄₇	Planar surface	Au ₁₄₇ Planar surface		
Methane	-11.9	-16.5 ^a	-13.9	-16.3 ^a	-14.5 ^c
Ethane	-17.8	-24.7 ^a	-20.4	-24.5^{a}	-24.1 ^c
Benzene	-39.2	-56.5^{b}	-48.1	-57.9 ^a	$-57.9,^{c}$ -61.5, ^d -62.7, ^e , -28.0, ^f -48.7 ^g
Water	-15.6	-18.3 ^a	-19.0	-20.8^{a}	-
Methanol	-25.3	-30.5 ^a	-29.5	-31.7 ^a	-
Methanamide	-31.3	-34.2^{a}	-38.6	-34.9^{a}	-
Methanamine	-53.1	-54.8 ^a	-64.2	-61.3 ^a	-
Imidazole	-55.7	-54.1 ^a	-66.9	-67.2^{a}	-
Dimethyl sulphide	-59.3	-63.9	-71.1	-69.1 ^a	-

^{*a*} Ref¹ DFT revPBE-vdW-DF functional;

^b Ref² DFT revPBE-vdW-DF functional;

^{*c*} Ref³ Au(111) surface temperature programmed desorption;

 d Ref⁴ Au(111) surface temperature programmed desorption;

^e Ref⁵ Au(111) surface temperature programmed desorption;

 f Ref⁶ AuNP on Al₂O₃ support chromatography;

^g Ref⁷ AuNP on silica support chromatography.

Table S8: Comparison of calculated adsorption energies, E_{ads} , of molecules to both the Pt(111) planar Pt₁₄₇ {111} nanoparticle surfaces. Experimental data for planar surfaces are also presented for comparison; "-" signifies that no experimental/DFT data were available.

Molecule	Surface/facet	$E_{ m ads}$ / kJ mol $^{-1}$			
		Pt ₁₄₇ calculation	Planar surface experiment	Planar surface DFT calculation	
Methane	(111)	-12.8	-15.2, ^{<i>a</i>} -16.1 ^{<i>b</i>}	-	
Ethane	(111)	-18.9	$-28.9,^{a}-36.8^{b}$	-	
Benzene	(111)	-48.0	-123.0 to -167.0 ^c	-74.3 , ^d -94.6^{e}	
Water	(111)	-19.8	-	-23.3 ^f	

^{*a*} Ref⁸ Pt(111) surface temperature programmed desorption;

^b Ref⁹ Pt(111) surface temperature programmed desorption;
 ^b Ref⁹ Pt(111) surface temperature programmed desorption;
 ^c Ref¹⁰ Pt(111) surface single crystal adsorption calorimetry;
 ^d Ref¹¹ Pt(111) surface DFT revPBE-vdW-DF functional;
 ^e Ref¹² Pt(111) surface DFT revPBE-vdW-DF functional;
 ^f Ref¹³ Pt(111) surface DFT revPBE-vdW-DF functional;

System	Cutoff / Ry	$E_{\rm ads}$ / kJ mol $^{-1}$			
		{111}	{100}	Edge	Vertex
Water	25	-15.6	-19.0	-17.7	-20.8
	35	-15.6	-18.9	-17.7	-20.8
	50	-15.3	-18.6	-17.5	-20.6
Methane	25	-11.9	-13.9	-10.1	-7.7
	35	-12.1	-14.0	-10.2	-7.6
	50	-12.5	-14.4	-10.6	-7.9

Table S9: Adsorption energies, E_{ads} , for methane and water adsorbed at different sites on the Au₁₄₇ NP calculated at a range of plane wave cutoffs.

References

- [1] L. B. Wright, P. M. Rodger, S. Corni and T. R. Walsh, J. Chem. Theory Comput., 2013, 9, 1616–1630.
- [2] Z. E. Hughes, L. B. Wright and T. R. Walsh, *Langmuir*, 2013, 29, 13217–13229.
- [3] S. M. Wetterer, D. J. Lavrich, T. Cummings, S. L. Bernasek and G. Scoles, J. Phys. Chem. B, 1998, 102, 9266–9275.
- [4] D. Syomin, J. Kim, B. E. Koel and G. B. Ellison, J. Phys. Chem. B, 2001, 105, 8387-8394.
- [5] W. Liu, F. Maass, M. Willenbockel, C. Bronner, M. Schulze, S. Soubatch, F. S. Tautz, P. Tegeder and A. Tkatchenko, *Phys. Rev. Lett.*, 2015, **115**, 036104.
- [6] V. V. Smirnov, S. N. Lanin and A. Y. Vasil'kov, Russ. Chem. Bull. Int. Ed., 2005, 54, 2286–2289.
- [7] M. Clément and H. Ménard, Langmuir, 2010, 26, 8309-8312.
- [8] S. L. Tait, Z. Dohnálek, C. T. Campbell and B. D. Kay, J. Chem. Phys., 2006, 125, 234308.
- [9] J. F. Weaver, A. F. Carlsson and R. J. Madix, Surf. Sci. Rep., 2003, 50, 107–199.
- [10] H. Ihm, H. M. Ajo, J. M. Gottfried and P. Bera, J. Phys. Chem. B, 2004, 108, 14627–14633.
- [11] J. Carrasco, W. Liu, A. Michaelides and A. Tkatchenko, J. Chem. Phys., 2014, 140, 084704.
- [12] H. Yildirim, T. Greber and A. Kara, J. Phys. Chem. C, 2013, 117, 20572–20583.
- [13] J. Carrasco, J. Klimeš and A. Michaelides, J. Chem. Phys., 2013, 138, 024708.