Supporting Information

for

Role of Imidazolium Cation on Structure and Activity of Candida

antarctica Lipase B Enzyme in Ionic Liquids

Ho Shin Kim, Doyoung Eom, Yoon-Mo Koo, and Yaroslava G. Yingling
${ }^{1}$ Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (USA)
${ }^{2}$ Department of Biological Engineering, Inha University, Incheon 402-751 (Republic of Korea)

Table S1. Simulation setup

Solvent	Components	Molecular Volume $\left(\AA^{3}\right)$	Volume Ratio $\mathrm{V}_{\mathrm{a}} / \mathrm{V}_{\mathrm{c}}$	Volume of Simulation Box (\AA^{3})	$\begin{gathered} \hline \text { Density } \\ \text { from } \\ \text { MD } \\ (\mathrm{g} / \mathrm{ml}) \\ \hline \end{gathered}$	Density from experiment (g/ml)
[Emim][TfO]	[Emim] ${ }^{+}$	234.25	0.71	192,151.21	1.39	1.39^{1}
	[TfO] ${ }^{-}$	165.70		(± 121.28)		
[Bmim][TfO]	[Bmim] ${ }^{+}$	296.77	0.56	205,552.22	1.32	1.30^{2}
	[TfO] ${ }^{-}$	165.70		(± 109.61)		
[Hmim][TfO]	$\left[^{\text {Hmim] }}{ }^{+}\right.$	360.29	0.46	251,349.19	1.25	$1.20{ }^{1}$
	[TfO] ${ }^{-}$	165.70		(± 204.87)		
[Omim][TfO]	[Omim] $^{+}$	423.70	0.39	277,985.43	1.21	1.19^{3}
	[TfO] ${ }^{-}$	165.70		(± 83.18)		

Figure S1. Root mean square deviation (RMSD) of CALB solvated in [Emim][TfO] (black), [Bmim][TfO] (Red), [Hmim][TfO] (Dark green) and [Omim][TfO] (Blue)

Figure S2. Radial distribution function of carbon atom in imidazolium cation. [Emim] ${ }^{+}$(black), $[\mathrm{Bmim}]^{+}$(red), $[\mathrm{Hmim}]^{+}$(green), and [Omim $]^{+}$(blue). Second solvation shell (7 $\dot{\mathrm{A}}$) is used for estimation of coordination number.

Table S2. Reaction rate of butyl acetate synthesis reaction using CALB in ILs

Solvents	Reaction Rate $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{hr})$
$[$ Emim $][\mathrm{TfO}]$	0.20
$[$ Bmim $][\mathrm{TfO}]$	0.85
$[\mathrm{Hmim}][\mathrm{TfO}]$	0.77
$[\mathrm{Omim}][\mathrm{TfO}]$	0.74

Table S3. Secondary structure of $\alpha-10$ helix (residue 285 to 287) in ILs

CALB in	Residue	$3-10$ Helix	Alpha Helix	Turn
	285 ILE	1.469	83.668	13.756
	286 VAL	6.258	62.206	25.974
	287 ALA	6.312	27.957	42.023
	285 ILE	0.043	99.887	0.370
$[B m i m][T f O]$	286 VAL	0.037	99.196	0.764
	287 ALA	0.086	80.785	11.383
	285 ILE	0.697	99.141	0.162
$[H m i m][T f O]$	286 VAL	0.025	98.581	1.394
	287 ALA	0.019	90.414	5.123
	285 ILE	0.021	95.418	4.540
$[$ Omim][TfO]	286 VAL	0.127	94.087	5.744
	287 ALA	0.127	70.626	17.115

Each percentage value was calculated in consecutive frame of 30 ns simulations

References

(1) A. Berthod, M. Ruiz-Angel and S. Carda-Broch, J. Chromatogr. A, 1184, 6 (2008).
(2) S. H. Lee and S. B. Lee, Chem. Commun., 3469 (2005).
(3) S. H. Ha, N. L. Mai and Y.M. Koo, Process. Biochem., 45, 1899 (2010).

