SUPPLEMENTARY INFORMATION

Chemical bonding and dynamic fluxionality of $\mathrm{B}_{15}{ }^{+}$cluster: a nanoscale double-axle tank tread \dagger

Ying-Jin Wang, ${ }^{\text {ab }}$ Xue-Rui You, ${ }^{\text {a }}$ Qiang Chen, ${ }^{\text {ab }}$ Lin-Yan Feng, ${ }^{a}$ Kang Wang, ${ }^{\text {a }}$ Ting Ou, ${ }^{\text {a }}$ Xiao-Yun Zhao, ${ }^{\text {a }}$ Hua-Jin Zhai* ${ }^{\text {ac }}$ and Si-Dian Li* ${ }^{\text {a }}$
${ }^{a}$ Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
${ }^{b}$ Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
${ }^{c}$ State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
*E-mail: hj.zhai@sxu.edu.cn (H.J.Z.); lisidian@sxu.edu.cn (S.D.L.)

SUPPLEMENTARY INFORMATION - PART I

Table S1. Cartesian coordinates for the global-minimum structure of $\mathrm{B}_{15}{ }^{+} C_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$ and its corresponding $C_{2 \mathrm{v}}$ transition state at the PBE0/6-311+G* level.

Figure S1. Canonical molecular orbitals (CMOs) for the subset of eleven peripheral σ bonds in the $C_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$ global minimum of $\mathrm{B}_{15}{ }^{+}$cluster. These CMOs are readily localized as two-center two-electron (2c-2e) σ bonds.

Figure S2. Canonical molecular orbitals (CMOs) of the $C_{2 v}\left({ }^{1} \mathrm{~A}_{1}\right)$ transition state of $\mathrm{B}_{15}{ }^{+}$cluster. (a) Eleven peripheral σ bonds, which can be localized as $2 \mathrm{c}-2 \mathrm{e}$ bonds. (b) Five delocalized σ bonds. (c) Two delocalized σ bonds associated with the inner rhombic B_{4} core. (d) Four delocalized π bonds. The CMOs for the (a), (b), and (d) subsets show one-to-one correspondence to each other, from bottom up.

Figure S3. Chemical bonding in the $C_{2 \mathrm{v}}$ transition state of $\mathrm{B}_{15}{ }^{+}$. (a) The electron localization functions (ELFs). (b) Bonding elements as revealed from the adaptive natural density partitioning (AdNDP) analysis. The occupation numbers (ONs) are shown.

Figure S4. Optimized structure of the $C_{2 v}$ global minimum of $\mathrm{B}_{14}{ }^{-}$cluster at the PBE0/6-311+G* level.

Figure S5. Evolution of electron localization function, $\operatorname{ELF}_{\sigma}$, against the bifurcation value for the $C_{2 \mathrm{v}}$ global minimum of $\mathrm{B}_{15}{ }^{+}$cluster. Note that for the rhombic B1B2B12B11 unit, the ELF_{σ} data is consistent with one four-center island only, rather than two three-center islands (B1B2B12 and B11B1B12), supporting the AdNDP scheme presented in Fig. 5(b).

SUPPLEMENTARY INFORMATION - PART II

A short movie extracted from the BOMD simulation for $\mathrm{B}_{15}{ }^{+}$. Each frame of the snapshot is reoriented horizontally. The simulation is performed at 500 K for over 60 ps and the movie roughly covers a time span of 30 ps .

Figure S1. Canonical molecular orbitals (CMOs) for the subset of eleven peripheral σ bonds in the $C_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$ global minimum of $\mathrm{B}_{15}{ }^{+}$cluster. These CMOs are readily localized as two-center two-electron (2c-2e) σ bonds.

Figure S2. Canonical molecular orbitals (CMOs) of the $C_{2 v}\left({ }^{1} \mathrm{~A}_{1}\right)$ transition state of $\mathrm{B}_{15}{ }^{+}$ cluster. (a) Eleven peripheral σ bonds, which can be localized as $2 \mathrm{c}-2 \mathrm{e}$ bonds. (b) Five delocalized σ bonds. (c) Two delocalized σ bonds associated with the inner rhombic B_{4} core. (d) Four delocalized π bonds. The CMOs for the (a), (b), and (d) subsets show one-to-one correspondence to each other, from bottom up.

Figure S3. Chemical bonding in the $C_{2 \mathrm{v}}$ transition state of $\mathrm{B}_{15}{ }^{+}$. (a) The electron localization functions (ELFs). (b) Bonding elements as revealed from the adaptive natural density partitioning (AdNDP) analysis. The occupation numbers (ONs) are shown.

(b)

$2 \times 3 c-2 e \sigma$
$1 \times 3 \mathrm{c} 3 \times 4 \mathrm{c}-2 \mathrm{e} \sigma$

$11 \times 2 c-2 e \sigma$ $\mathrm{ON}=1.91|\mathrm{e}|$ $\mathrm{ON}=1.92-1.66|\mathrm{e}|$ $1 \times 12 c-2 e \sigma$ $\mathrm{ON}=1.95-1.81|\mathrm{e}|$

$1 \times 3 c-2 e \pi$

Figure S4. Optimized structure of the $C_{2 v}$ global minimum of $\mathrm{B}_{14}{ }^{-}$cluster at the PBE0/6-311+G* level.

Figure S5. Evolution of electron localization function, ELF_{σ}, against the bifurcation value for the $C_{2 \mathrm{v}}$ global minimum of $\mathrm{B}_{15}{ }^{+}$cluster. Note that for the rhombic B1B2B12B11 unit, the ELF_{σ} data is consistent with one four-center island only, rather than two three-center islands (B1B2B12 and B11B1B12), supporting the AdNDP scheme presented in Fig. 5(b).

$E L F_{\sigma}=0.86$

$E L F_{\sigma}=0.88$

$E L F_{\sigma}=0.90$

Table S1. Cartesian coordinates for the global-minimum structure of $\mathrm{B}_{15}{ }^{+} C_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$ and its corresponding $C_{2 \mathrm{v}}$ transition state at the PBE0/6-311+G* level.
(a) $\mathbf{G M}$ of $\mathbf{B}_{15}{ }^{+} \boldsymbol{C}_{2 \mathrm{v}}$

B
B
B
B
B
B
B
B
B

B
B
B
B
B
B

0.00000000	0.00000000	3.22413600
0.00000000	1.38650300	2.60984100
0.00000000	2.00601300	1.12463900
0.00000000	2.47696800	-0.35955800
0.00000000	1.78165400	-1.78525600
0.00000000	0.76156000	-3.03970000
0.00000000	-0.76156000	-3.03970000
0.00000000	-1.78165400	-1.78525600
0.00000000	-2.47696800	-0.35955800
0.00000000	-2.00601300	1.12463900
0.00000000	-1.38650300	2.60984100
0.00000000	0.00000000	1.46918600
0.00000000	0.82890700	-0.10000900
0.00000000	0.00000000	-1.59323600
0.00000000	-0.82890700	-0.10000900

(b) TS of $\mathrm{B}_{15}{ }^{+} \boldsymbol{C}_{2 \mathrm{v}}$

B	0.00000000	3.14286300	-0.38330400
B	0.00000000	2.85508000	1.10302000
B	0.00000000	1.44316400	1.89486400
B	0.00000000	0.00000000	2.51837900

B	0.00000000	-1.44316400	1.89486400
B	0.00000000	-2.85508000	1.10302000
B	0.00000000	-3.14286300	-0.38330400
B	0.00000000	-2.21793000	-1.64214700
B	0.00000000	-0.76617000	-2.32396200
B	0.00000000	0.76617000	-2.32396200
B	0.00000000	2.21793000	-1.64214700
B	0.00000000	1.52931900	0.06796100
B	0.00000000	0.00000000	0.85279500
B	0.00000000	-1.52931900	0.06796100
B	0.00000000	0.00000000	-0.80403700

