Supporting Information for:

Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy

Adam S. Chatterley^{1,2}, Florian Lackner^{1,2}, Daniel M. Neumark^{1,2}, Stephen R. Leone^{1,2,3} and Oliver Gessner¹

- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- 2. Department of Chemistry, University of California, Berkeley, California 94720, USA
- 3. Department of Physics, University of California, Berkeley, California 94720, USA

Figure S1 – Intensities of the strongest peaks of the three Br charge states as a function of the pump pulse intensity. Note the double logarithmic scale. All data have been shifted along the ordinate to a common first point at 1. Solid lines show least squares fits to linear functions, giving slopes of 0.06, 0.60 and 1.7 for charge states of 0, +1, and +2, respectively.

Table S1 – Assignments and fit results for the fit to Br. peaks in the 1 ps spectrum (Fig. 1c)

Assignment +	Lit. Energy (eV) +	Fit Energy (eV)	Fit Intensity (arb.)	Fit FWHM (eV) ‡
$^{2}P_{3/2} \rightarrow ^{2}D_{5/2}$	64.38	64.40	0.37	0.20
$^{2}P_{1/2} \rightarrow ^{2}D_{3/2}$	64.97	64.97	0.08	0.12

† From ref. 34.

[‡] The fit was constrained to a maximum FWHM of 0.2 eV, to prevent the fit algorithm erroneously fitting multiple peaks with a single broad envelope.

Assignment +	Lit. Energy (eV) †	Fit Energy (eV)	Fit Intensity (arb.)	Fit FWHM (eV) ‡
${}^{3}P_{1} \rightarrow {}^{1}D_{2}$	65.59	65.62	0.07	0.20
${}^{3}P_{2} \rightarrow {}^{1}D_{2}$	66.00	66.05	0.15	0.11
${}^{3}P_{2} \rightarrow {}^{3}D_{3}$	66.21	66.24	0.81	0.14
$^{1}D_{2} \rightarrow {}^{3}F_{2}$	66.45	66.42	0.55	0.13
$\begin{array}{c} D_2 \rightarrow T_3 \\ \hline 3P_1 \rightarrow 3D_2 \\ \hline 3P_1 \rightarrow 3D_1 \end{array}$	66.52	66.57	0.46	0.19
$^{3}P_{1} \rightarrow ^{3}P_{1}$	67.07	67.10	0.15	0.17
${}^{3}P_{2} \rightarrow {}^{3}P_{2}$	67.30	67.35	0.24	0.18
	67.44	67.49	0.11	0.20
$^{3}P_{2} \rightarrow ^{3}F_{2}$	67.86	67.87	0.04*	0.10
${}^{3}P_{0} \rightarrow {}^{1}P_{1}$	68.19	68.24	0.11	0.20

Table S2 – Assignments and fit results for the fit to Br⁺ peaks in the 1 ps spectrum (Fig. 1c)

† From ref. 34.

[‡] The fit was constrained to a maximum FWHM of 0.2 eV, to prevent the fit algorithm erroneously fitting multiple peaks with a single broad envelope.

* This peak is overlapping with a Br⁺⁺ peak, so the fitted intensity is not conclusive.

Assignment +	Lit. Energy (eV) †	Fit Energy (eV)	Fit Intensity (arb.)	Fit FWHM (eV) ‡
$^{2}P_{1/2} \rightarrow (^{3}P) ^{2}D_{3/2}$	67.86	67.87	0.05*	0.10
$^{2}P_{3/2} \rightarrow (^{1}D) ^{2}F_{5/2}$	68.00	68.02	0.13	0.20
$^{2}P_{3/2} \rightarrow (^{1}P) ^{2}D_{5/2}$	68.36	68.46	0.20	0.20
$^{2}\text{D}_{5/2} \rightarrow (^{1}\text{D}) ^{2}\text{F}_{7/2}$	68.67	68.72	0.24	0.20
${}^{4}S_{3/2} \rightarrow ({}^{3}P) {}^{2}P_{3/2}$				
${}^{4}S_{3/2} \rightarrow ({}^{3}P) {}^{4}P_{5/2}$	68.90	68.92	0.29	0.20
$^{2}D_{3/2} \rightarrow (^{1}D) ^{2}D_{3/2}$				
$^{2}\text{D}_{5/2} \rightarrow (^{3}\text{P}) ^{2}\text{D}_{5/2}$				
${}^{4}S_{3/2} \rightarrow ({}^{3}P) {}^{4}P_{1/2}$	69.63	69.62	0.24	0.20
$^{2}D_{5/2} \rightarrow (^{3}P) ^{2}D_{5/2}$				
${}^{4}S_{3/2} \rightarrow ({}^{3}P) {}^{4}P_{3/2}$				
$^{2}D_{3/2} \rightarrow (^{3}P) ^{2}D_{5/2}$	69.87	69.88	0.03	0.08
$^{2}P_{3/2} \rightarrow (^{1}S) ^{2}D_{5/2}$				
$^{2}D_{5/2} \rightarrow (^{1}D) ^{2}P_{3/2}$	70.18	70.23	0.01	0.15
${}^{4}S_{3/2} \rightarrow ({}^{3}P) {}^{4}D_{3/2}$				
$^{2}P_{1/2} \rightarrow (^{1}S) ^{2}D_{3/2}$	71.08**	70.96	0.02	0.10
$^{2}\text{D}_{5/2} \rightarrow (^{1}\text{S}) ^{2}\text{D}_{5/2}$	71.52**	71.24	0.06	0.20

Table S3 – Assignments and fit results for the fit to Br⁺⁺ peaks in the 1 ps spectrum (Fig. 1c)

† From ref. 34.

[‡] The fit was constrained to a maximum FWHM of 0.2 eV, to prevent the fit algorithm erroneously fitting multiple peaks with a single broad envelope.

* This peak is overlapping with a Br⁺⁺ peak, so the fitted intensity is not conclusive.

** Predicted by theory, but not observed in ref. 34.