A Molecular Mechanical Model for N-Heterocyclic Carbenes Supporting Information

Sascha Gehrke, Oldamur Hollóczki* Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany holloczki@gmail.com

June 24, 2016

Contents

1	Bond Stretching and Angle Bending Parameters	2
2	CaFF Charges	11
3	Non-Bonding Parameters Obtained by Fitting with Different Water Models	15
4	Geometrical Data Obtained using Different Methods	16
5	Overview of Partial Atomic Charges with Different R	40
6	Thermodynamic Data for THF/Carbene-Mixtures	45
7	Sum of Partial Atomic Charges on the Ring Atoms	46

1 Bond Stretching and Angle Bending Parameters

Figure 1: Structure of $\mathbf{1}$ with the names of the atoms.

Table	1:	Bond stretching and angle bending parameters for 1. The force constants k_l and
		k_{θ} are taken from the OPLS/AA force field. The optima l_0 and θ_0 are obtained
		from an optimization at a $HF/6-31(d)$ level of theory.

bond-/angletype	$l_0 \ / \ heta_0$ Å/ degree	$k_l \ / \ k_{ heta} \ \mathrm{kcal} \ \mathrm{mol}^{-1} \ \mathrm{\AA}^{-2}$
		/ kcal mol ^{-1} rad ^{-1}
CC-L	0.100	rigid
CC-NA	1.352	rigid
CW-NA	1.385	427.5
CW-HA	1.069	385.0
CW-CW	1.333	520.6
CT-NA	1.443	337.0
NA-CC-L	128.75	rigid
NA-CC-NA	102.50	rigid
CW-NA-CC	112.46	70.0
CW-CW-NA	106.28	70.0
CC-NA-CT	123.30	70.0
CW-NA-CT	124.24	70.0
CW-CW-HA	130.78	35.0
NA-CW-HA	122.94	35.0

Figure 2: Structure of $\mathbf{2}$ with the names of the atoms.

${\rm bond}\text{-}/{\rm angle type}$	l_0 / θ_0	$k_l \ / \ k_{ heta}$
	A/ degree	kcal mol ^{-1} Å ^{-2}
		$/ \text{ kcal mol}^{-1} \text{ rad}^{-1}$
CC-L	0.200	rigid
CC-NA	1.330	rigid
CC-S	1.724	rigid
CW-NA	1.397	427.5
CW-S	1.743	300.0
CW-CW	1.327	520.6
CW-HA	1.071	385.0
NA-CT	1.455	337.0
S-CC-L	136.76	rigid
NA-CC-L	117.37	rigid
S-CC-NA	105.87	rigid
CC-NA-CW	118.50	70.0
CC-NA-CT	121.13	70.0
CC-S-CW	94.34	80.0
S-CW-CW	108.64	70.0
NA-CW-CW	112.64	70.0
NA-CW-HA	119.47	35.0
S-CW-HA	123.93	35.0
CW-NA-CT	120.37	70.0
CW-CW-HA	127.76	35.0

Table 2: Bond stretching and angle bending parameters for **2**.

Figure 3: Structure of ${\bf 3}$ with the names of the atoms.

band /angletyma	1. / A.	
bond-/angletype	ι_0 / σ_0	$\kappa_l / \kappa_{\theta}$
	A/ degree	Kcal mol $-$ A $-$
		/ kcal mol ¹ rad ¹
CC-L	0.300	rigid
CC-NA	1.364	rigid
CC-NA'	1.332	rigid
NA-CR	1.364	477.0
NA'-NA"	1.365	400.0
NA"-CR	1.271	477.0
CR-H4	1.070	367.0
NA-CT	1.444	337.0
NA-CC-L	130.44	rigid
NA'-CC-L	128.85	rigid
NA'-CC-NA	100.72	rigid
CC-NA-CR	109.49	70.0
CC-NA'-NA"	115.42	56.0
CC-NA-CT	124.62	70.0
CC-NA'-CT	126.21	70.0
NA'-NA"-CR	103.18	70.0
NA"-NA'-CT	118.37	70.0
CR-NA-CT	125.88	70.0
NA-CR-NA"	111.19	70.0
NA-CR-HA	124.41	35.0

Table 3: Bond stretching and angle bending parameters for **3**.

Figure 4: Structure of **4** with the names of the atoms.

		<u> </u>
bond-/angletype	l_0 / θ_0	k_l / k_{θ}
	A/ degree	kcal mol ^{-1} A ^{-2}
		$/ \text{ kcal mol}^{-1} \text{ rad}^{-1}$
CC-L	0.100	rigid
CC-NA	1.415	rigid
CC-CW	1.367	rigid
NA-CR	1.314	477.0
NA-CW	1.398	427.5
CW-HA	1.070	385.0
CR-HA	1.070	385.0
NA-CT	1.446	337.0
NA-CC-L	131.05	rigid
CW-CC-L	128.66	rigid
CC-NA-CR	112.89	70.0
CC-NA-CT	122.47	70.0
CC-CW-NA	111.44	70.0
CC-CW-HA	129.94	35.0
CW-NA-CR	106.90	70.0
CW-NA-CT	126.64	70.0
CR-NA-CT	125.55	70.0
NA-CR-HA	125.76	35.0

Table 4: Bond stretching and angle bending parameters for 4.

Figure 5: Structure of **5** with the names of the atoms.

bond-/angletype	$l_0 \ / \ heta_0$ Å/ degree	$k_l \ / \ k_ heta \ \mathrm{kcal \ mol^{-1} \ \AA^{-2}} \ / \ \mathrm{kcal \ mol^{-1} \ rad^{-1}}$
CC-L	0.250	rigid
CC-NA	1.341	rigid
NA-CT	1.436	337.0
NA-CT*	1.455	337.0
CT-CT	1.532	310.0
CT-H1	1.087	331.0
NA-CC-L	127.22	rigid
CC-NA-CT	123.55	70.0
$CC-NA-CT^*$	114.80	70.0
NA-CT-H1	111.18	50.0
CT-CT-H1	112.54	35.0
CT-CT-NA	101.57	50.0
CT-NA-CT	120.62	50.0

Table 5: Bond stretching and angle bending parameters for $\mathbf{5}$.

*CT in the ring.

Figure 6: Structure of $\mathbf{6}$ with the names of the atoms.

bond-/angle type	$l_0 \neq \theta_0$	$k_l \ / \ k_{ heta}$
	$ m \AA/~degree~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	
		/ kcal mol ^{-1} rad ^{-1}
CC-L	0.250	rigid
NA-CC	1.354	rigid
CC-CA4	1.434	rigid
CA3-CA4	1.354	469.0
CA1-CA2	1.354	469.0
CA2-CA3	1.415	469.0
CA1-NA	1.362	483.0
CA-HA	1.075	367.0
NA-CT	1.462	337.0
NA-CC-L	121.42	rigid
CA4-CC-L	126.31	rigid
CA1-NA-CC	125.91	70.0
CA3-CA4-CC	123.81	63.0
CA1-CA2-CA3	118.45	63.0
CA2-CA3-CA4	118.45	63.0
NA-CA1-CA2	121.11	70.0
HA-CA4-CC	116.96	35.0
HA-CA-CA	120.76	35.0
HA-CA1-NA	116.49	35.0
CA1-NA-CT	116.50	70.0
CC-NA-CT	117.60	70.0

Table 6: Bond stretching and angle bending parameters for 6.

Figure 7: Structure of **7** with the names of the atoms.

		8 8
bond-/angle type	$l_0 \neq heta_0$	$k_l \ / \ k_{ heta}$
	Å/ degree	kcal mol ^{-1} Å ^{-2}
		$/ \text{ kcal mol}^{-1} \text{ rad}^{-1}$
CC-L	0.100	rigid
CC-NA	1.306	rigid
CC-CT	1.521	rigid
NA-CT	1.436	337.0
NA-CT'	1.487	337.0
CT-HC	1.085	331.0
CT-CT	1.545	310.0
CT-CT'	1.545	310.0
CT"- CT '	1.534	310.0
CT"'-CT	1.534	310.0
NA-CC-L	120.9	rigid
CT-CC-L	132.6	rigid
CC-NA-CT	120.9	70.0
CC-NA-CT'	118.9	70.0
CT'-CT-HC	111.1	35.0
HC-CT-HC	106.9	35.0
CT-CT'-NA	101.1	70.0
CT'-NA-CT	120.2	70.0
CT-CT-CC	106.0	63.0
CT"'-CT-CC	108.6	63.0
NA-CT'-CT"	110.9	70.0
CT-CC-NA	106.5	70.0
CT'-CT-CT	105.6	40.0
CT"'-CT-CT"''	109.5	40.0
CT-CT-CT"'	112.1	40.0

Table 7: Bond stretching and angle bending parameters for 7.

Figure 8: Structure of ${\bf 8}$ with the names of the atoms.

		0 0	,
bond-/angletype	$l_0 \neq heta_0$	$k_l \ / \ k_{ heta}$	
	Å/ degree	kcal mol ^{-1} Å ^{-2}	
	, _	/ kcal mol ^{-1} rad ^{-1}	
CC-L	0.250	rigid	
CC-CA	1.379	rigid	
CA-NA	1.374	418.0	
CT-NA	1.453	337.0	
NA-NA	1.392	400.0	
CA-OS	1.316	320.0	
OS-CT	1.416	320.0	
CA-CC-L	131.3	rigid	
CA-CC-CA	97.3	rigid	
CA-NA-CT	120.9	70.0	
CC-CA-NA	116.9	70.0	
NA-NA-CA	104.1	70.0	
NA-NA-CT	116.0	56.0	
NA-CA-OS	114.0	80.0	
CC-CA-OS	129.1	70.0	
CA-OS-CT	116.7	60.0	

Table 8: Bond stretching and angle bending parameters for 8.

Figure 9: Structure of ${\bf 9}$ with the names of the atoms.

${\rm bond}\text{-}/{\rm angle type}$	$l_0 \neq \theta_0$	k_l / k_{θ}		
	A/ degree	kcal mol ^{-1} Å ^{-2}		
		/ kcal mol ^{-1} rad ^{-1}		
CC-L	0.100	rigid		
CC-CA	1.392	rigid		
CA-CA	1.331	rigid		
CA-NA	1.348	427.0		
CT-NA	1.447	367.0		
CA-CC-L	151.4	rigid		
CA-CC-CA	57.1	rigid		
CA-CA-CC	61.4	rigid		
CC-CA-NA	145.1	70.0		
CA-CA-NA	153.4	70.0		
CA-NA-CT	118.5	50.0		

Table 9: Bond stretching and angle bending parameters for 9.

2 CaFF Charges

Table 1): CaFF	'-charges	for	1
---------	---------	-----------	-----	---

Atom	Charge
L	-1.000
$\mathbf{C}\mathbf{C}$	0.000
NA	0.640
CW	-0.350
HA	0.210

Table 11: CaFF-charges for **2**.

Atom	Charge
L	-0.570
$\mathbf{C}\mathbf{C}$	-0.200
NA	0.780
\mathbf{S}	0.160
CW1	-0.130
CW2	-0.380
HA1	0.160
HA2	0.180

 $\overline{\mathrm{CW1}}$ next to S, HA1 next to CW1.

Table 12: CaFF-charges for **3**.

Atom	Charge
L	-0.620
$\mathbf{C}\mathbf{C}$	0.000
NA1	0.680
NA2	0.430
NA3	-0.620
CR	-0.050
HA	0.180

NA1 and NA2 next to CC, NA3 between NA2 and CR.

Table 13: CaFF-charges for 4.

Atom	Charge
L	-0.400
$\mathbf{C}\mathbf{C}$	-0.850
CW	0.300
NA1	0.730
NA2	0.000
CR	-0.070
HA1	0.090
HA2	0.200

 $\overline{\rm NA1}$ between CC and CR, HA1 next to CW, HA2 next to CR.

Table 14: CaFF-char	rges for 5.
---------------------	-------------

Atom	Charge
L	-0.480
$\mathbf{C}\mathbf{C}$	-0.400
NA	0.400
CT	-0.020
H1	0.030

Atom	Charge
L	-0.590
$\mathbf{C}\mathbf{C}$	-0.500
NA	0.940
CA1	-0.490
CA2	0.180
CA3	-0.370
CA4	0.460
HA1	0.190
HA2	0.060
HA3	0.160
HA4	-0.040

Table 15: CaFF-charges for **6**.

CAs are counted starting at the CA next to the NA, HAx next to CAx.

Table 16: CaFF-charges for 7.

Atom	Charge
L	-1.040
$\mathbf{C}\mathbf{C}$	-0.100
NA	0.590
CT3	0.960
CT1	0.490
CT2	-0.400
CT4	-0.340
CT5	-0.320
HC1	0.050
HC2	0.060

CT1, CT2, CT3 are in the ring, counted from the NA.

HC1 are next to CT2.

HC2 are hydrogens on the methylgroups.

CT4 next to CT1, CT5 next to CT3.

Table 1	7: Ca	FF-char	ges fo	r 8.
---------	-------	---------	--------	------

Atom	Charge
L	0.200
$\mathbf{C}\mathbf{C}$	-1.700
CA	1.030
NA	-0.280
OS	-0.400
CT	0.110
H1	0.030

Atom	Charge
L	-0.200
CC	-0.800
CA	0.600
NA	-0.500

Table 18: CaFF-charges for **9**.

3 Non-Bonding Parameters Obtained by Fitting with Different Water Models

Water model	SPC/E	SPC	TIPS	TIP3P
Charge L	-1.00	-1.00	-0.50	-0.50
Charge CC	0.00	0.00	-0.50	-0.50
Charge NA	0.64	0.59	0.59	0.64
Charge CW	-0.35	-0.30	-0.30	-0.35
Charge HA	0.06	0.06	0.06	0.06
σ / Å	3.55	3.55	3.45	3.55
$\epsilon~/~{\rm kcal~mol^{-1}}$	0.38	0.37	0.47	0.33

Table 19: Non-Bonding Parameters obtained by fitting with different three-site water models.

	cor	npared	to the $\mathrm{HF}/6$ -	-31G(d) leve	l are highlig	hted.		
atom	\mathbf{s}	HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
CC	NA	1.35	1.36	1.38	1.36	1.37	1.37	1.37
$\mathbf{C}\mathbf{C}$	NA	1.35	1.36	1.38	1.36	1.37	1.37	1.37
NA	CW	1.38	1.39	1.40	1.38	1.39	1.39	1.39
NA	CT	1.44	1.45	1.46	1.44	1.45	1.46	1.45
CW	CW	1.33	1.35	1.36	1.35	1.36	1.36	1.35
CW	HA	1.07	1.08	1.08	1.08	1.08	1.08	1.08
CW	NA	1.38	1.39	1.40	1.38	1.39	1.39	1.39
CW	HA	1.07	1.08	1.08	1.08	1.09	1.08	1.08
NA	CT	1.44	1.45	1.46	1.44	1.45	1.46	1.45
CT	HC	1.08	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.10	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.10	1.09
CT	HC	1.08	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.10	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.10	1.09

Table 20: Distances in the structure of $\mathbf{1}$ (R = Me) after optimization with different methods. Differences bigger than 0.02 Å

4 Geometrical Data Obtained using Different Methods

atom	s	B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
CC	NA	1.37	1.38	1.36	1.37	1.37	1.36	1.37	1.37	1.37
$\mathbf{C}\mathbf{C}$	NA	1.37	1.38	1.36	1.37	1.37	1.36	1.37	1.37	1.37
NA	CW	1.39	1.40	1.38	1.38	1.39	1.38	1.38	1.39	1.39
NA	CT	1.45	1.46	1.44	1.45	1.45	1.44	1.45	1.46	1.45
CW	CW	1.36	1.36	1.35	1.36	1.36	1.35	1.36	1.36	1.35
CW	HA	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
CW	NA	1.39	1.40	1.38	1.38	1.39	1.38	1.38	1.39	1.39
CW	HA	1.08	1.08	1.08	1.08	1.09	1.08	1.08	1.08	1.08
NA	CT	1.45	1.46	1.44	1.45	1.45	1.44	1.45	1.46	1.45
CT	HC	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.10	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.10	1.09
CT	HC	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.10	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.10	1.09

atoms	5		HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
NA	CC	NA	102.5	102.15	101.82	102.05	101.71	101.44	101.62
NA	CC	NA	102.5	102.15	101.82	102.05	101.71	101.44	101.62
CW	NA	$\mathbf{C}\mathbf{C}$	112.5	112.83	113.02	112.96	113.17	113.24	113.14
CW	NA	CT	124.3	124.12	124.09	124.19	124.19	124.20	124.21
CT	NA	$\mathbf{C}\mathbf{C}$	123.3	123.05	122.90	122.85	122.64	122.55	122.64
CT	NA	CW	124.3	124.12	124.09	124.19	124.19	124.20	124.21
CW	CW	NA	106.3	106.09	106.06	106.01	105.97	106.03	106.04
CW	CW	HA	130.8	130.63	130.56	130.61	130.54	130.69	130.69
HA	CW	NA	123.0	123.29	123.38	123.39	123.49	123.28	123.27
HA	CW	CW	130.8	130.63	130.56	130.61	130.54	130.69	130.69
NA	CW	CW	106.3	106.09	106.07	106.01	105.98	106.03	106.04
NA	CW	HA	123.0	123.27	123.36	123.37	123.48	123.29	123.28
HA	CW	CW	130.8	130.64	130.57	130.62	130.55	130.67	130.67
HA	CW	NA	123.0	123.27	123.36	123.37	123.48	123.29	123.28
CT	NA	CC	123.3	123.05	122.89	122.84	122.62	122.54	122.63
CT	NA	CW	124.3	124.12	124.09	124.19	124.20	124.21	124.22
HC	CT	NA	107.8	107.61	107.48	107.48	107.33	107.16	107.24
HC	CT	HC	109.2	109.38	109.51	109.32	109.42	109.75	109.67
HC	CT	HC	109.2	109.38	109.51	109.32	109.42	109.75	109.67
HC	CT	NA	111.0	110.78	110.70	110.91	110.88	110.53	110.59
HC	CT	HC	109.2	109.38	109.51	109.32	109.42	109.75	109.67
HC	CT	HC	108.7	108.88	108.93	108.88	108.89	109.10	109.07
HC	CT	NA	111.0	110.78	110.70	110.91	110.88	110.53	110.59
HC	CT	HC	109.2	109.38	109.51	109.32	109.42	109.75	109.67
HC	CT	HC	108.7	108.88	108.93	108.88	108.89	109.10	109.07
HC	CT	NA	107.8	107.62	107.50	107.49	107.35	107.16	107.24
HC	CT	HC	109.2	109.35	109.46	109.29	109.38	109.73	109.66
HC	CT	HC	109.2	109.35	109.46	109.29	109.38	109.73	109.66
HC	CT	NA	111.0	110.79	110.70	110.91	110.88	110.53	110.59
HC	CT	HC	109.2	109.35	109.46	109.29	109.38	109.73	109.66
HC	CT	HC	108.7	108.92	108.99	108.91	108.94	109.13	109.09
HC	CT	NA	111.0	110.79	110.70	110.91	110.88	110.53	110.59
HC	CT	HC	109.2	109.35	109.46	109.29	109.38	109.73	109.66
HC	CT	HC	108.7	108.92	108.99	108.91	108.94	109.13	109.09

Table 21: Angles in the structure of ${\bf 1}$ (R = Me) after optimization with different methods.

atom	5		B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
NA	$\mathbf{C}\mathbf{C}$	NA	101.45	101.93	102.10	101.42	101.75	102.08	101.69	101.49	101.68
NA	CC	NA	101.45	101.93	102.10	101.42	101.75	102.08	101.69	101.49	101.68
CW	NA	$\mathbf{C}\mathbf{C}$	113.24	112.92	112.92	113.47	113.13	112.92	113.24	113.19	113.09
CW	NA	CT	124.27	124.22	124.28	124.02	124.22	124.26	124.02	124.24	124.27
CT	NA	$\mathbf{C}\mathbf{C}$	122.49	122.86	122.80	122.51	122.65	122.81	122.74	122.57	122.64
CT	NA	CW	124.27	124.22	124.28	124.02	124.22	124.26	124.02	124.24	124.27
CW	CW	NA	106.03	106.11	106.00	105.82	105.98	106.03	105.91	106.05	106.07
CW	CW	HA	130.74	130.46	131.14	130.82	130.53	130.56	130.88	130.67	130.66
HA	CW	NA	123.22	123.43	122.86	123.36	123.49	123.41	123.21	123.28	123.28
HA	CW	CW	130.74	130.46	131.14	130.82	130.53	130.56	130.88	130.67	130.66
NA	CW	CW	106.03	106.12	106.11	105.82	105.99	106.03	105.91	106.06	106.07
NA	CW	HA	123.22	123.41	122.73	123.36	123.47	123.40	123.21	123.29	123.29
HA	CW	CW	130.75	130.47	131.16	130.82	130.54	130.57	130.88	130.65	130.64
HA	CW	NA	123.22	123.41	122.73	123.36	123.47	123.40	123.21	123.29	123.29
CT	NA	$\mathbf{C}\mathbf{C}$	122.46	122.85	123.55	122.51	122.63	122.80	122.74	122.55	122.63
CT	NA	CW	124.29	124.22	123.59	124.02	124.22	124.27	124.02	124.24	124.28
HC	CT	NA	107.30	107.52	107.88	107.29	107.36	107.46	107.41	107.20	107.25
HC	CT	HC	109.35	109.42	109.12	109.64	109.38	109.32	109.59	109.70	109.65
HC	CT	HC	109.35	109.42	109.12	109.63	109.38	109.32	109.60	109.70	109.65
HC	CT	NA	111.05	110.79	111.08	110.49	110.92	110.92	110.50	110.57	110.61
HC	CT	HC	109.35	109.42	109.12	109.64	109.38	109.32	109.59	109.70	109.65
HC	CT	HC	108.71	108.88	108.52	109.28	108.86	108.87	109.21	109.07	109.05
HC	CT	NA	111.05	110.79	111.08	110.48	110.92	110.92	110.49	110.57	110.61
HC	CT	HC	109.35	109.42	109.12	109.63	109.38	109.32	109.60	109.70	109.65
HC	CT	HC	108.71	108.88	108.52	109.28	108.86	108.87	109.21	109.07	109.05
HC	CT	NA	107.29	107.54	107.74	107.29	107.38	107.48	107.41	107.20	107.25
HC	CT	HC	109.33	109.37	108.84	109.64	109.34	109.29	109.59	109.69	109.63
HC	CT	HC	109.33	109.37	108.84	109.63	109.34	109.29	109.60	109.69	109.63
HC	CT	NA	111.06	110.80	111.16	110.49	110.92	110.92	110.50	110.57	110.61
HC	CT	HC	109.33	109.37	108.84	109.64	109.34	109.29	109.59	109.69	109.63
HC	CT	HC	108.74	108.94	109.06	109.28	108.91	108.91	109.21	109.10	109.07
HC	CT	NA	111.06	110.80	111.16	110.48	110.92	110.92	110.49	110.57	110.61
HC	CT	HC	109.33	109.37	108.84	109.63	109.34	109.29	109.60	109.69	109.63
HC	CT	HC	108.74	108.94	109.06	109.28	108.91	108.91	109.21	109.10	109.07

Table 22: Angles in the structure of ${\bf 1}$ (R = Me) after optimization with different methods.

atom	ıs			$_{\mathrm{HF}}$	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HA	CW	NA	CT	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CW	CW	NA	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HA	CW	CW	HA	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CW	CW	NA	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HA	CW	CW	HA	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HA	CW	NA	CT	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	CW	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.5	119.53	119.55	119.45	119.46	119.56	119.54
HC	CT	NA	CW	60.5	60.47	60.45	60.55	60.54	60.44	60.46
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.5	119.53	119.55	119.45	119.46	119.56	119.54
HC	CT	NA	CW	60.5	60.47	60.45	60.55	60.54	60.44	60.46
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	CW	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.5	119.50	119.51	119.42	119.42	119.54	119.52
HC	CT	NA	CW	60.5	60.50	60.49	60.58	60.58	60.46	60.48
HC	CT	NA	CC	119.5	119.50	119.51	119.42	119.42	119.54	119.52
HC	CT	NA	CW	60.5	60.50	60.49	60.58	60.58	60.46	60.48

Table 23: Dihedrals in the structure of $\mathbf{1}$ (R = Me) after optimization with different methods.

atom	ıs			B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.00	180.00	180.00	179.93	180.00	180.00	179.89	180.00	180.00
HA	CW	NA	CT	0.00	0.00	0.00	0.06	0.00	0.00	0.09	0.00	0.00
HA	CW	CW	NA	180.00	180.00	180.00	179.93	180.00	180.00	179.88	180.00	180.00
HA	CW	CW	HA	0.00	0.00	0.00	0.17	0.00	0.00	0.27	0.00	0.00
HA	CW	CW	NA	180.00	180.00	180.00	179.93	180.00	180.00	179.88	180.00	180.00
HA	CW	CW	HA	0.00	0.00	0.00	0.17	0.00	0.00	0.27	0.00	0.00
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.00	180.00	180.00	179.93	180.00	180.00	179.89	180.00	180.00
HA	CW	NA	CT	0.00	0.00	0.00	0.06	0.00	0.00	0.09	0.00	0.00
HC	CT	NA	CC	0.00	0.00	0.00	0.03	0.00	0.00	0.02	0.00	0.00
HC	CT	NA	CW	180.00	180.00	180.00	179.97	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.46	119.52	119.56	119.44	119.45	119.44	119.49	119.55	119.53
HC	CT	NA	CW	60.54	60.48	60.45	60.55	60.55	60.56	60.49	60.45	60.47
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.46	119.52	119.55	119.50	119.45	119.44	119.53	119.55	119.53
HC	CT	NA	CW	60.54	60.48	60.44	60.50	60.55	60.56	60.49	60.45	60.47
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.00	0.00	0.00	0.03	0.00	0.00	0.02	0.00	0.00
HC	CT	NA	CW	180.00	180.00	180.00	179.97	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.43	119.48	119.16	119.44	119.41	119.41	119.49	119.53	119.52
HC	CT	NA	CW	60.57	60.52	60.84	60.55	60.59	60.59	60.49	60.47	60.48
HC	CT	NA	CC	119.43	119.48	119.16	119.50	119.41	119.41	119.53	119.53	119.52
HC	CT	NA	CW	60.57	60.52	60.84	60.50	60.59	60.59	60.49	60.47	60.48

Table 24: Dihedrals in the structure of $\mathbf{1}$ (R = Me) after optimization with different methods.

atom	s	HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
NA	$\mathbf{C}\mathbf{C}$	1.33	1.35	1.36	1.34	1.36	1.36	1.35
NA	CW	1.40	1.40	1.41	1.39	1.40	1.40	1.39
NA	CT	1.46	1.47	1.47	1.45	1.46	1.47	1.46
CC	\mathbf{S}	1.72	1.74	1.73	1.70	1.72	1.72	1.72
\mathbf{S}	CW	1.74	1.75	1.76	1.73	1.74	1.74	1.73
CW	CW	1.33	1.35	1.36	1.34	1.36	1.35	1.35
CW	HA	1.07	1.08	1.08	1.08	1.09	1.08	1.08
CW	HA	1.07	1.08	1.09	1.08	1.09	1.08	1.08
CT	HC	1.08	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.08	1.10	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.10	1.10	1.09	1.10	1.09	1.09

Table 25: Distances in the structure of 2 (R = Me) after optimization with different methods. Differences bigger than 0.02 Å compared to the HF/6-31G(d) level are highlighted.

atom	s	B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
NA	$\mathbf{C}\mathbf{C}$	1.35	1.36	1.34	1.35	1.36	1.34	1.35	1.36	1.35
NA	CW	1.40	1.41	1.38	1.38	1.40	1.39	1.39	1.40	1.39
NA	CT	1.47	1.48	1.44	1.46	1.46	1.45	1.46	1.47	1.47
$\mathbf{C}\mathbf{C}$	\mathbf{S}	1.74	1.73	1.69	1.71	1.72	1.70	1.71	1.72	1.72
\mathbf{S}	CW	1.75	1.76	1.72	1.72	1.74	1.73	1.73	1.74	1.73
CW	CW	1.35	1.36	1.34	1.36	1.36	1.34	1.36	1.35	1.35
CW	HA	1.08	1.08	1.08	1.08	1.09	1.08	1.08	1.08	1.08
CW	HA	1.08	1.09	1.08	1.08	1.09	1.08	1.08	1.08	1.08
CT	HC	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09

atom	s		HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
CC	NA	CW	118.5	119.37	118.92	118.65	118.90	119.11	118.97
CC	NA	CT	121.1	120.35	120.83	120.98	120.71	120.42	120.57
CW	NA	$\mathbf{C}\mathbf{C}$	118.5	119.37	118.92	118.65	118.90	119.11	118.97
CW	NA	CT	120.4	120.29	120.25	120.37	120.39	120.46	120.46
CT	NA	CC	121.1	120.35	120.83	120.98	120.71	120.42	120.57
CT	NA	CW	120.4	120.29	120.25	120.37	120.39	120.46	120.46
\mathbf{S}	CC	NA	105.9	104.77	105.24	105.43	105.08	104.76	104.96
CW	\mathbf{S}	CC	94.3	95.22	95.32	95.60	95.82	95.78	95.70
CW	CW	\mathbf{S}	108.6	108.34	108.23	108.08	107.99	108.19	108.19
CW	CW	HA	127.4	127.33	127.23	127.25	127.25	127.22	127.21
HA	CW	\mathbf{S}	123.9	124.33	124.54	124.67	124.76	124.59	124.60
HA	CW	CW	127.4	127.33	127.23	127.25	127.25	127.22	127.21
HA	CW	NA	119.5	119.73	119.93	119.98	120.07	119.88	119.87
HA	CW	CW	127.9	127.96	127.77	127.77	127.71	127.97	127.94
HC	CT	NA	107.9	107.31	107.49	107.53	107.37	107.07	107.17
HC	CT	HC	109.6	109.74	109.85	109.67	109.76	110.15	110.05
HC	CT	HC	109.6	109.74	109.85	109.67	109.76	110.15	110.05
HC	CT	NA	110.4	110.44	110.16	110.39	110.35	109.98	110.05
HC	CT	HC	109.6	109.74	109.85	109.67	109.76	110.15	110.05
HC	CT	HC	109.1	109.16	109.31	109.18	109.23	109.50	109.43
HC	CT	NA	110.4	110.44	110.16	110.39	110.35	109.98	110.05
HC	CT	HC	109.6	109.74	109.85	109.67	109.76	110.15	110.05
HC	CT	HC	109.1	109.16	109.31	109.18	109.23	109.50	109.43

Table 26: Angles in the structure of $\mathbf{2}$ (R = Me) after optimization with different methods.

atom	s		B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
CC	NA	CW	119.37	118.77	118.51	119.15	118.83	118.59	118.98	119.04	118.87
$\mathbf{C}\mathbf{C}$	NA	CT	120.35	120.85	120.96	120.55	120.72	121.00	120.77	120.46	120.62
CW	NA	$\mathbf{C}\mathbf{C}$	119.37	118.77	118.51	119.15	118.83	118.59	118.98	119.04	118.87
CW	NA	CT	120.29	120.37	120.53	120.30	120.44	120.41	120.25	120.50	120.52
CT	NA	$\mathbf{C}\mathbf{C}$	120.35	120.85	120.96	120.55	120.72	121.00	120.77	120.46	120.62
CT	NA	CW	120.29	120.37	120.53	120.30	120.44	120.41	120.25	120.50	120.52
\mathbf{S}	CC	NA	104.77	105.28	105.30	104.83	105.09	105.44	105.13	104.77	105.00
CW	\mathbf{S}	$\mathbf{C}\mathbf{C}$	95.22	95.35	95.97	96.13	95.84	95.61	95.68	95.82	95.71
CW	CW	\mathbf{S}	108.34	108.16	107.67	108.11	107.96	108.05	108.30	108.13	108.16
CW	CW	HA	127.33	127.27	128.25	127.06	127.30	127.27	127.10	127.30	127.24
HA	CW	\mathbf{S}	124.33	124.57	124.08	124.83	124.75	124.68	124.60	124.57	124.60
HA	CW	CW	127.33	127.27	128.25	127.06	127.30	127.27	127.10	127.30	127.24
HA	CW	NA	119.73	119.92	119.70	120.17	120.04	119.99	119.93	119.84	119.87
HA	CW	CW	127.96	127.65	127.75	128.04	127.67	127.70	128.15	127.93	127.87
HC	CT	NA	107.31	107.52	107.71	107.29	107.40	107.55	107.45	107.10	107.21
HC	CT	HC	109.74	109.77	109.40	110.03	109.72	109.64	110.01	110.10	110.00
HC	CT	HC	109.74	109.77	109.40	110.05	109.72	109.64	110.00	110.10	110.00
HC	CT	NA	110.44	110.25	110.37	109.93	110.39	110.42	109.93	110.02	110.11
HC	CT	HC	109.74	109.77	109.40	110.03	109.72	109.64	110.01	110.10	110.00
HC	CT	HC	109.16	109.27	109.57	109.58	109.21	109.15	109.51	109.47	109.39
HC	CT	NA	110.44	110.25	110.37	109.93	110.39	110.42	109.92	110.02	110.11
HC	CT	HC	109.74	109.77	109.40	110.05	109.72	109.64	110.00	110.10	110.00
HC	CT	HC	109.16	109.27	109.57	109.58	109.21	109.15	109.51	109.47	109.39

Table 27: Angles in the structure of $\mathbf{2}$ (R = Me) after optimization with different methods.

Table 28: Dihedrals in the structure of $\mathbf{2}$ (R = Me) after optimization with different methods.

atom	ıs			HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
HA	CW	\mathbf{S}	$\mathbf{C}\mathbf{C}$	180.0	180.00	180.00	179.98	180.00	179.98	180.00
HA	CW	CW	NA	180.0	180.00	180.00	179.99	180.00	179.99	180.00
HA	CW	CW	HA	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	180.00	179.99	180.00	179.99	180.00
HA	CW	NA	CT	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CW	CW	\mathbf{S}	180.0	180.00	180.00	179.99	180.00	179.99	180.00
HA	CW	CW	HA	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	CW	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.7	119.58	119.66	119.61	119.59	119.67	119.66
HC	CT	NA	CW	60.3	60.42	60.34	60.40	60.41	60.34	60.34
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.7	119.58	119.66	119.60	119.59	119.66	119.66
HC	CT	NA	CW	60.3	60.42	60.34	60.39	60.41	60.33	60.34

Table 29: Dihedrals in the structure of $\mathbf{2}$ (R = Me) after optimization with different methods.

atom	ns			B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
HA	CW	\mathbf{S}	$\mathbf{C}\mathbf{C}$	180.00	180.00	179.99	179.98	180.00	179.98	179.99	180.00	179.93
HA	CW	CW	NA	180.00	180.00	179.99	179.99	180.00	179.99	179.99	180.00	179.97
HA	CW	CW	HA	0.00	0.00	0.00	0.04	0.00	0.00	0.02	0.00	0.01
HA	CW	NA	$\mathbf{C}\mathbf{C}$	180.00	180.00	179.99	179.99	180.00	179.99	179.99	180.00	179.96
HA	CW	NA	CT	0.00	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.01
HA	CW	CW	S	180.00	180.00	179.99	179.97	180.00	179.99	179.99	180.00	179.95
HA	CW	CW	HA	0.00	0.00	0.00	0.04	0.00	0.00	0.02	0.00	0.01
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.00	0.02
HC	CT	NA	CW	180.00	180.00	180.00	179.96	180.00	180.00	180.00	180.00	179.98
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.58	119.64	119.37	119.66	119.58	119.59	119.68	119.65	119.64
HC	CT	NA	CW	60.42	60.36	60.63	60.32	60.42	60.40	60.30	60.35	60.33
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.58	119.64	119.37	119.63	119.58	119.60	119.70	119.65	119.67
HC	CT	NA	CW	60.42	60.36	60.63	60.39	60.42	60.41	60.31	60.35	60.36

atom	ıs	$_{\mathrm{HF}}$	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
NA	$\mathbf{C}\mathbf{C}$	1.36	1.37	1.38	1.37	1.38	1.38	1.38
NA	CR	1.36	1.37	1.38	1.36	1.38	1.38	1.37
NA	CT	1.45	1.45	1.46	1.44	1.45	1.46	1.45
CC	NA	1.33	1.34	1.36	1.34	1.35	1.35	1.35
NA	NA	1.37	1.38	1.40	1.36	1.38	1.39	1.38
NA	CT	1.44	1.45	1.46	1.44	1.45	1.45	1.45
NA	CR	1.27	1.30	1.31	1.29	1.31	1.31	1.30
CR	HA	1.07	1.08	1.08	1.08	1.09	1.08	1.08
CT	HC	1.08	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09

 Table 30: Distances in the structure of **3** (R = Me) after optimization with different methods. Differences bigger than 0.02 Å compared to the HF/6-31G(d) level are highlighted.

atom	ıs	B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
NA	$\mathbf{C}\mathbf{C}$	1.38	1.39	1.36	1.37	1.38	1.37	1.38	1.38	1.38
NA	CR	1.38	1.38	1.36	1.36	1.38	1.36	1.37	1.38	1.37
NA	CT	1.45	1.46	1.44	1.45	1.45	1.44	1.45	1.46	1.46
CC	NA	1.35	1.36	1.34	1.35	1.35	1.34	1.35	1.35	1.35
NA	NA	1.39	1.40	1.37	1.36	1.38	1.36	1.37	1.39	1.38
NA	CT	1.45	1.46	1.44	1.45	1.45	1.44	1.45	1.46	1.45
NA	CR	1.30	1.31	1.29	1.31	1.31	1.29	1.31	1.31	1.30
CR	HA	1.08	1.08	1.08	1.08	1.09	1.08	1.08	1.08	1.08
CT	HC	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.10	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09

atom	ns		HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
CC	NA	CR	109.5	110.11	110.33	110.13	110.39	110.43	110.31
CC	NA	CT	124.6	124.27	124.09	124.12	123.90	123.76	123.87
CR	NA	$\mathbf{C}\mathbf{C}$	109.5	110.11	110.33	110.13	110.39	110.43	110.31
CR	NA	CT	125.9	125.62	125.58	125.75	125.71	125.81	125.82
CT	NA	$\mathbf{C}\mathbf{C}$	124.6	124.27	124.09	124.12	123.90	123.76	123.87
CT	NA	CR	125.9	125.62	125.58	125.75	125.71	125.81	125.82
NA	$\mathbf{C}\mathbf{C}$	NA	100.7	100.61	100.46	100.38	100.17	99.99	100.10
NA	NA	$\mathbf{C}\mathbf{C}$	115.4	115.68	115.86	115.97	116.23	116.31	116.19
NA	NA	CT	118.4	118.34	118.09	118.46	118.24	118.04	118.15
CT	NA	CC	126.2	125.98	126.04	125.57	125.53	125.65	125.65
CT	NA	NA	118.4	118.34	118.09	118.46	118.24	118.04	118.15
CR	NA	NA	103.2	102.72	102.23	102.73	102.27	102.08	102.31
HA	CR	NA	124.2	124.62	124.62	124.76	124.81	124.60	124.62
HA	CR	NA	124.6	124.49	124.28	124.46	124.25	124.21	124.29
HC	CT	NA	107.8	107.61	107.51	107.54	107.44	107.19	107.26
HC	CT	HC	109.8	109.99	110.08	109.96	110.03	110.34	110.28
HC	CT	HC	109.8	109.99	110.08	109.96	110.03	110.34	110.28
HC	CT	NA	110.2	110.12	110.05	110.21	110.19	109.85	109.90
HC	CT	HC	109.8	109.99	110.08	109.96	110.03	110.34	110.28
HC	CT	HC	108.9	109.01	109.06	108.96	108.96	109.25	109.21
HC	CT	NA	110.2	110.12	110.05	110.21	110.19	109.85	109.90
HC	CT	HC	109.8	109.99	110.08	109.96	110.03	110.34	110.28
HC	CT	HC	108.9	109.01	109.06	108.96	108.96	109.25	109.21
HC	CT	NA	107.6	107.52	107.41	107.42	107.32	107.12	107.19
HC	CT	HC	109.2	109.34	109.47	109.27	109.38	109.70	109.62
HC	CT	HC	109.2	109.34	109.47	109.27	109.38	109.70	109.62
HC	CT	NA	110.9	110.75	110.65	110.87	110.81	110.48	110.55
HC	CT	HC	109.2	109.34	109.47	109.27	109.38	109.70	109.62
HC	CT	HC	109.0	109.12	109.16	109.10	109.10	109.33	109.29
HC	CT	NA	110.9	110.75	110.65	110.87	110.81	110.48	110.55
HC	CT	HC	109.2	109.34	109.47	109.27	109.38	109.70	109.62
HC	CT	HC	109.0	109.12	109.16	109.10	109.10	109.33	109.29

Table 31: Angles of the structure of $\mathbf{3}$ (R = Me) after optimization with different methods.

Table 32: Angles of the structure of $\mathbf{3}$ (R = Me) after optimization with different methods.

aton	ns		B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
CC	NA	CR	110.37	110.20	109.98	110.67	110.32	110.07	110.39	110.36	110.22
CC	NA	CT	123.80	124.10	124.78	123.77	123.92	124.14	123.97	123.79	123.89
CR	NA	$\mathbf{C}\mathbf{C}$	110.37	110.20	109.98	110.67	110.32	110.07	110.39	110.36	110.22
CR	NA	CT	125.84	125.70	125.24	125.54	125.76	125.79	125.62	125.85	125.89
CT	NA	CC	123.80	124.10	124.78	123.77	123.92	124.14	123.97	123.79	123.89
CT	NA	CR	125.84	125.70	125.24	125.54	125.76	125.79	125.62	125.85	125.89
NA	CC	NA	99.90	100.56	100.45	99.79	100.22	100.42	100.05	100.04	100.16
NA	NA	$\mathbf{C}\mathbf{C}$	116.33	115.81	115.90	116.72	116.21	115.96	116.47	116.28	116.17
NA	NA	CT	118.09	118.16	118.47	118.01	118.26	118.48	118.00	118.07	118.16
CT	NA	$\mathbf{C}\mathbf{C}$	125.59	126.03	125.63	125.27	125.53	125.57	125.53	125.65	125.67
CT	NA	NA	118.09	118.16	118.47	118.01	118.26	118.48	118.00	118.07	118.16
CR	NA	NA	102.27	102.22	102.66	102.13	102.26	102.72	102.14	102.06	102.27
HA	CR	NA	124.50	124.63	124.17	124.98	124.79	124.77	124.75	124.56	124.61
HA	CR	NA	124.37	124.15	124.83	124.33	124.21	124.40	124.31	124.18	124.21
HC	CT	NA	107.42	107.56	107.76	107.31	107.47	107.57	107.40	107.22	107.29
HC	CT	HC	109.96	110.01	109.55	110.32	110.00	109.93	110.26	110.31	110.26
HC	CT	HC	109.96	110.01	109.55	110.37	110.00	109.93	110.31	110.31	110.26
HC	CT	NA	110.31	110.12	110.58	109.70	110.22	110.23	109.74	109.89	109.92
HC	CT	HC	109.96	110.01	109.55	110.32	110.00	109.93	110.26	110.31	110.26
HC	CT	HC	108.88	109.00	108.81	109.40	108.93	108.94	109.37	109.22	109.19
HC	CT	NA	110.31	110.12	110.58	109.71	110.22	110.23	109.73	109.89	109.92
HC	CT	HC	109.96	110.01	109.55	110.37	110.00	109.93	110.31	110.31	110.26
HC	CT	HC	108.88	109.00	108.81	109.40	108.93	108.94	109.37	109.22	109.19
HC	CT	NA	107.21	107.45	107.72	107.51	107.34	107.44	107.58	107.15	107.19
HC	CT	HC	109.34	109.40	109.12	109.73	109.35	109.24	109.66	109.66	109.60
HC	CT	HC	109.34	109.40	109.12	109.44	109.35	109.24	109.43	109.66	109.60
HC	CT	NA	110.97	110.73	111.01	110.09	110.85	110.90	110.09	110.52	110.57
HC	CT	HC	109.34	109.40	109.12	109.73	109.35	109.24	109.66	109.66	109.60
HC	CT	HC	108.98	109.11	108.82	109.45	109.07	109.07	109.39	109.30	109.28
HC	CT	NA	110.97	110.73	111.01	110.59	110.85	110.90	110.65	110.52	110.57
HC	CT	HC	109.34	109.40	109.12	109.44	109.35	109.24	109.43	109.66	109.60
HC	CT	HC	108.98	109.11	108.82	109.45	109.07	109.07	109.39	109.30	109.28

atom	ıs			HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
НА	CR	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HA	CR	NA	CT	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HA	CR	NA	NA	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	NA	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.8	119.88	119.89	119.85	119.87	119.90	119.90
HC	CT	NA	NA	60.2	60.12	60.11	60.15	60.13	60.10	60.10
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.8	119.88	119.89	119.85	119.87	119.90	119.90
HC	CT	NA	NA	60.2	60.12	60.11	60.15	60.13	60.10	60.10
HC	CT	NA	$\mathbf{C}\mathbf{C}$	0.0	0.00	0.00	0.00	0.00	0.00	0.00
HC	CT	NA	CR	180.0	180.00	180.00	180.00	180.00	180.00	180.00
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.4	119.40	119.44	119.33	119.37	119.45	119.43
HC	CT	NA	CR	60.6	60.60	60.56	60.67	60.63	60.55	60.58
HC	CT	NA	$\mathbf{C}\mathbf{C}$	119.4	119.40	119.44	119.33	119.37	119.45	119.42
HC	CT	NA	CR	60.6	60.60	60.56	60.67	60.63	60.55	60.57

Table 33: Dihedrals of the structure of $\mathbf{3}$ (R = Me) after optimization with different methods.

B3LYP BLYP M06MP2PBE PBE0 SCS-MP2 TPSS TPSSh atoms NA HA CR CC180.00 180.00 180.00 179.88180.00 180.00 179.89180.00 180.00 CRNA CT0.00 0.00 0.00 1.600.00 0.00 1.670.00 0.00HA HA CRNA NA 180.00 180.00 180.00 179.89 180.00 180.00 179.88 180.00 180.00 NA CCHC CT0.00 0.00 0.00 0.050.00 0.00 0.04 0.000.00 HC CTNA NA 179.64 180.00 180.00 180.00 180.00 180.00 179.62180.00 180.00 NA CT CCHC 119.84 119.88 119.71 119.92 119.86 119.85 119.83 119.90 119.90 CTNA NA HC 60.16 60.1260.29 60.49 60.1460.1560.5160.10 60.10HC CTNA CC119.88 119.71 119.88119.86 119.85 119.84 119.96 119.90119.90 NA NA HC CT60.16 60.1260.29 59.7160.14 60.1559.7060.1060.10NA CCHC CT0.00 0.00 0.00 15.530.00 0.00 15.620.000.00 HC CTNA CR 180.00 180.00 180.00 166.14180.00 180.00 166.14180.00 180.00 HC CTNA CC119.34 119.42 119.41 135.02119.36 119.33 135.08119.42 119.44HC CTNA CR 60.5860.5946.6560.6460.66 60.67 46.6860.5660.58NA HC CTCC119.34 119.42119.41 103.90 119.36 119.33103.88 119.44 119.42HC CTNA CR60.66 60.58 60.59 74.4360.64 60.67 74.3660.5660.58

Table 34: Dihedrals of the structure of $\mathbf{3}$ (R = Me) after optimization with different methods.

atom	S	HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
NA	CR	1.32	1.35	1.35	1.33	1.35	1.35	1.34
NA	$\mathbf{C}\mathbf{C}$	1.42	1.42	1.42	1.40	1.41	1.42	1.41
NA	CT	1.45	1.46	1.46	1.44	1.45	1.46	1.46
CR	NA	1.31	1.34	1.35	1.33	1.34	1.34	1.34
CR	HA	1.07	1.08	1.08	1.08	1.09	1.08	1.08
NA	CW	1.40	1.40	1.41	1.39	1.40	1.40	1.40
NA	CT	1.45	1.46	1.46	1.44	1.45	1.46	1.46
CW	$\mathbf{C}\mathbf{C}$	1.37	1.39	1.39	1.38	1.39	1.39	1.38
CW	HA	1.07	1.08	1.08	1.08	1.09	1.08	1.08
CT	HC	1.08	1.09	1.09	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09
CT	HC	1.08	1.09	1.10	1.09	1.10	1.09	1.09

Table 35: Distances in the structure of 4 (R = Me) after optimization with different methods. Differences bigger than 0.02 Åcompared to the HF/6-31G(d) level are highlighted.

atom	s	B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
NA	CR	1.34	1.35	1.33	1.35	1.35	1.33	1.34	1.35	1.34
NA	$\mathbf{C}\mathbf{C}$	1.41	1.42	1.39	1.40	1.41	1.40	1.41	1.42	1.41
NA	CT	1.45	1.47	1.44	1.45	1.46	1.44	1.46	1.46	1.46
CR	NA	1.33	1.35	1.33	1.34	1.34	1.33	1.34	1.34	1.33
CR	HA	1.08	1.08	1.08	1.08	1.09	1.08	1.08	1.08	1.08
NA	CW	1.40	1.41	1.39	1.38	1.40	1.39	1.39	1.40	1.40
NA	CT	1.45	1.47	1.43	1.45	1.45	1.44	1.45	1.46	1.46
CW	$\mathbf{C}\mathbf{C}$	1.38	1.39	1.37	1.39	1.39	1.38	1.39	1.39	1.38
CW	HA	1.08	1.08	1.08	1.08	1.09	1.08	1.08	1.08	1.08
CT	HC	1.09	1.09	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09
CT	HC	1.09	1.10	1.09	1.09	1.10	1.09	1.09	1.09	1.09

atom	S		HF	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
CR	NA	CC	112.9	113.81	113.42	113.41	113.58	113.61	113.53
CR	NA	CT	124.6	123.90	123.76	123.76	123.52	123.53	123.60
$\mathbf{C}\mathbf{C}$	NA	CR	112.9	113.81	113.42	113.41	113.58	113.61	113.53
$\mathbf{C}\mathbf{C}$	NA	CT	122.5	122.29	122.83	122.82	122.88	122.85	122.86
CT	NA	CR	124.6	123.90	123.76	123.76	123.52	123.53	123.60
CT	NA	CC	122.5	122.29	122.83	122.82	122.88	122.85	122.86
NA	CR	NA	108.5	107.10	106.97	107.22	106.88	107.10	107.22
NA	CR	HA	125.0	125.14	125.08	125.12	125.01	125.02	125.08
HA	CR	NA	126.5	127.76	127.95	127.66	128.11	127.87	127.70
HA	CR	NA	125.0	125.14	125.08	125.12	125.01	125.02	125.08
CW	NA	CR	106.9	107.09	107.36	107.36	107.38	107.20	107.21
CW	NA	CT	126.6	127.12	126.93	126.87	127.05	127.43	127.32
CT	NA	CR	126.5	125.80	125.70	125.77	125.57	125.36	125.46
CT	NA	CW	126.6	127.12	126.93	126.87	127.05	127.43	127.32
CC	CW	NA	111.4	111.94	111.38	111.28	111.43	111.68	111.59
CC	CW	HA	129.9	129.82	129.91	129.75	129.78	129.84	129.83
HA	CW	NA	118.6	118.24	118.71	118.97	118.79	118.47	118.57
HA	CW	CC	129.9	129.82	129.91	129.75	129.78	129.84	129.83
HC	CT	NA	109.8	109.95	109.83	109.85	109.90	109.45	109.48
HC	CT	HC	109.0	108.88	108.99	108.86	109.00	109.21	109.15
HC	CT	HC	109.0	108.88	109.17	108.94	108.91	109.28	109.22
HC	CT	NA	110.0	110.13	109.60	110.02	110.20	109.63	109.74
HC	CT	HC	109.0	108.88	108.99	108.86	109.00	109.21	109.15
HC	CT	HC	109.1	108.83	108.98	108.89	108.87	109.25	109.21
HC	CT	NA	110.0	110.13	110.25	110.26	109.92	110.00	110.03
HC	CT	HC	109.0	108.88	109.17	108.94	108.91	109.28	109.22
HC	CT	HC	109.1	108.83	108.98	108.89	108.87	109.25	109.21
HC	CT	NA	110.3	110.47	110.12	110.31	110.36	109.87	109.91
HC	CT	HC	109.3	109.54	109.78	109.65	110.00	110.06	109.92
HC	CT	HC	109.3	109.54	109.76	109.58	109.47	109.78	109.77
HC	CT	NA	109.5	109.44	109.26	109.25	108.35	108.69	108.94
HC	CT	HC	109.3	109.54	109.78	109.65	110.00	110.06	109.92
HC	CT	HC	108.7	108.39	108.56	108.45	108.50	108.88	108.83
HC	CT	NA	109.5	109.44	109.34	109.58	110.13	109.53	109.44
HC	CT	HC	109.3	109.54	109.76	109.58	109.47	109.78	109.77
HC	CT	HC	108.7	108.39	108.56	108.45	108.50	108.88	108.83

Table 36: Angles in the structure of ${\bf 4}~({\rm R}={\rm Me})$ after optimization with different methods.

atom	5		B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
CR	NA	CC	113.16	113.31	113.36	114.14	113.53	113.38	113.85	113.53	113.46
CR	NA	CT	123.94	123.80	124.87	123.09	123.54	123.77	123.45	123.54	123.59
$\mathbf{C}\mathbf{C}$	NA	CR	113.16	113.31	113.36	114.14	113.53	113.38	113.85	113.53	113.46
$\mathbf{C}\mathbf{C}$	NA	CT	122.90	122.89	121.77	122.72	122.91	122.85	122.70	122.91	122.93
CT	NA	CR	123.94	123.80	124.87	123.09	123.54	123.77	123.45	123.54	123.59
CT	NA	CC	122.90	122.89	121.77	122.72	122.91	122.85	122.70	122.91	122.93
NA	CR	NA	107.41	107.15	107.16	106.36	106.98	107.29	106.83	107.22	107.33
NA	CR	HA	125.10	125.00	125.29	125.57	124.97	125.15	125.44	124.95	124.99
HA	CR	NA	127.49	127.85	127.55	128.07	128.06	127.55	127.73	127.84	127.68
$\mathbf{H}\mathbf{A}$	CR	NA	125.10	125.00	125.29	125.57	124.97	125.15	125.44	124.95	124.99
CW	NA	CR	107.18	107.15	107.36	107.57	107.27	107.26	107.38	107.09	107.11
CW	NA	CT	126.90	127.10	125.80	126.90	127.13	126.91	126.95	127.52	127.42
CT	NA	CR	125.91	125.73	126.83	125.41	125.61	125.83	125.66	125.38	125.47
CT	NA	CW	126.90	127.10	125.80	126.90	127.13	126.91	126.95	127.52	127.42
$\mathbf{C}\mathbf{C}$	CW	NA	111.35	111.52	111.28	111.75	111.51	111.37	111.73	111.75	111.67
$\mathbf{C}\mathbf{C}$	CW	HA	129.71	129.68	130.14	129.44	129.67	129.67	129.45	129.71	129.73
HA	CW	NA	118.94	118.80	118.57	118.81	118.82	118.96	118.82	118.54	118.60
HA	CW	CC	129.71	129.68	130.14	129.44	129.67	129.67	129.45	129.71	129.73
HC	CT	NA	109.84	109.89	110.33	109.58	109.96	109.88	109.39	109.48	109.48
HC	CT	HC	108.92	108.89	108.87	108.97	108.95	108.89	109.16	109.20	109.16
HC	CT	HC	108.92	109.08	108.87	109.42	108.87	108.86	109.21	109.21	109.17
HC	CT	NA	110.11	109.67	110.00	109.11	110.25	110.18	109.77	109.85	109.88
HC	CT	HC	108.92	108.89	108.87	108.97	108.95	108.89	109.16	109.20	109.16
HC	CT	HC	108.90	108.92	108.75	109.31	108.84	108.87	109.36	109.21	109.19
HC	CT	NA	110.11	110.35	110.00	110.43	109.95	110.13	109.94	109.88	109.94
HC	CT	HC	108.92	109.08	108.87	109.42	108.87	108.86	109.21	109.21	109.17
HC	CT	HC	108.90	108.92	108.75	109.31	108.84	108.87	109.36	109.21	109.19
HC	CT	NA	110.25	110.24	110.87	110.04	110.43	110.34	109.86	109.98	110.01
HC	CT	HC	109.59	109.69	109.62	110.14	109.97	109.58	109.86	110.13	110.07
HC	CT	HC	109.59	109.68	109.62	109.73	109.44	109.59	109.88	109.64	109.60
HC	CT	NA	109.45	109.31	109.24	108.10	108.35	109.48	109.17	108.34	108.39
HC	CT	HC	109.59	109.69	109.62	110.14	109.97	109.58	109.86	110.13	110.07
HC	CT	HC	108.48	108.49	108.20	108.97	108.45	108.41	108.93	108.91	108.87
HC	CT	NA	109.45	109.41	109.24	109.84	110.17	109.41	109.11	109.83	109.88
HC	CT	HC	109.59	109.68	109.62	109.73	109.44	109.59	109.88	109.64	109.60
HC	CT	HC	108.48	108.49	108.20	108.97	108.45	108.41	108.93	108.91	108.87

Table 37: Angles in the structure of 4 (R = Me) after optimization with different methods.

atom	ıs			$_{\mathrm{HF}}$	B3LYP-D3	BLYP-D3	PBE0-D3	PBE-D3	TPSS-D3	TPSSh-D3
HA	CR	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	179.94	179.96	179.92	179.99	179.99
HA	CR	NA	CT	0.0	0.00	0.42	0.36	1.67	1.02	0.63
HA	CR	NA	CW	180.0	180.00	179.87	179.99	179.94	179.95	179.96
HA	CR	NA	CT	0.0	0.00	1.22	0.65	0.03	0.99	0.76
HA	CW	NA	CR	180.0	180.00	179.87	179.93	179.65	179.87	179.93
HA	CW	NA	CT	0.0	0.00	1.51	0.59	0.32	0.95	0.75
HA	CW	CC	NA	180.0	180.00	179.81	179.93	179.51	179.84	179.92
HC	CT	NA	CR	0.0	0.00	8.67	3.37	3.64	5.09	4.23
HC	CT	NA	CW	180.0	180.00	172.95	177.40	176.33	176.17	176.73
HC	CT	NA	CR	119.9	119.99	128.37	123.19	116.51	124.85	124.00
HC	CT	NA	CW	60.1	60.01	53.25	57.58	63.52	56.40	56.96
HC	CT	NA	CR	119.9	119.99	111.67	116.70	123.49	115.00	115.81
HC	CT	NA	CW	60.1	60.01	66.72	62.53	56.48	63.75	63.23
HC	CT	NA	CR	0.0	0.00	0.84	3.16	17.45	8.52	5.04
HC	CT	NA	$\mathbf{C}\mathbf{C}$	180.0	180.00	179.56	177.27	164.28	172.59	175.65
HC	CT	NA	CR	120.4	120.68	121.48	123.76	137.95	129.01	125.54
HC	CT	NA	$\mathbf{C}\mathbf{C}$	59.6	59.32	58.91	56.67	43.78	52.11	55.15
HC	CT	NA	CR	120.4	120.68	119.84	117.55	103.53	112.14	115.58
HC	CT	NA	$\mathbf{C}\mathbf{C}$	59.6	59.32	59.77	62.01	74.74	66.74	63.73

Table 38: Dihedrals in the structure of 4 (R = Me) after optimization with different methods.

Table 39: Dihedrals in the structure of 4 (R = Me) after optimization with different methods.

atom	ıs			B3LYP	BLYP	M06	MP2	PBE	PBE0	SCS-MP2	TPSS	TPSSh
HA	CR	NA	$\mathbf{C}\mathbf{C}$	180.00	180.00	180.00	180.00	179.88	180.00	179.79	179.87	179.89
HA	CR	NA	CT	0.00	0.35	0.00	2.51	1.68	0.12	0.31	1.60	1.59
HA	CR	NA	CW	180.00	179.92	180.00	179.79	179.90	179.99	179.81	179.85	179.86
HA	CR	NA	CT	0.00	1.26	0.00	3.50	0.03	0.11	0.50	0.47	0.48
HA	CW	NA	CR	180.00	179.88	180.00	179.82	179.67	179.98	179.97	179.76	179.76
HA	CW	NA	CT	0.00	1.49	0.00	3.60	0.26	0.15	0.29	0.40	0.40
HA	CW	$\mathbf{C}\mathbf{C}$	NA	180.00	179.82	180.00	179.83	179.53	179.98	179.99	179.66	179.66
HC	CT	NA	CR	0.00	8.95	0.00	20.72	3.83	0.80	2.24	0.78	0.90
HC	CT	NA	CW	180.00	172.66	180.00	163.70	176.09	179.35	178.13	179.97	179.84
HC	CT	NA	CR	119.95	128.62	120.12	139.95	116.32	119.17	121.99	120.68	120.78
HC	CT	NA	CW	60.05	52.99	59.88	44.47	63.76	60.67	58.38	60.06	59.97
HC	CT	NA	CR	119.95	111.38	120.12	99.88	123.68	120.71	117.68	119.16	119.02
HC	CT	NA	CW	60.05	67.01	59.88	75.70	56.24	59.44	61.95	60.10	60.23
HC	CT	NA	CR	0.00	0.94	0.00	19.27	17.72	0.75	0.83	15.43	15.11
HC	CT	NA	$\mathbf{C}\mathbf{C}$	180.00	179.44	180.00	163.45	163.98	179.38	179.28	166.18	166.51
HC	CT	NA	CR	120.61	121.59	120.91	139.58	138.22	119.93	119.71	135.84	135.50
HC	CT	NA	CC	59.39	58.79	59.09	43.13	43.49	59.94	60.18	45.77	46.12
HC	CT	NA	CR	120.61	119.75	120.91	101.64	103.29	121.40	121.35	105.31	105.64
HC	CT	NA	$\mathbf{C}\mathbf{C}$	59.39	59.87	59.09	75.64	75.01	58.73	58.76	73.08	72.74

5 Overview of Partial Atomic Charges with Different R

Figure 10: Partial Atomic Charges for $\mathbf{1}$ with different R in different conformations. The lines serve as guides to the eye and mark the partial atomic charges fitted in the force field.

Figure 11: Partial Atomic Charges for **2** with different R in different conformations.

Figure 12: Partial Atomic Charges for ${\bf 3}$ with different R in different conformations.

Figure 13: Partial Atomic Charges for **4** with different R in different conformations.

Figure 14: Partial Atomic Charges for **5** with different R in different conformations.

Figure 15: Partial Atomic Charges for **6** with different R in different conformations.

Figure 16: Partial Atomic Charges for 7 with different R in different conformations.

Figure 17: Partial Atomic Charges for **8** with different R in different conformations.

Figure 18: Partial Atomic Charges for ${\bf 9}$ with different R in different conformations.

6 Thermodynamic Data for THF/Carbene-Mixtures

Mixture	$\begin{array}{c} {\rm Viscosity} \\ {\rm in \ mPa \cdot s} \end{array}$	Heat capacity in $J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	Diffusion coefficient in $pm^2 \cdot ps^{-1}$
pure THF	0.554	152	_
THF + Dimethylimidazol-2-ylidenes	0.650	157	1038
THF + Bisisopropylimidazol-2-ylidenes	1.059	202	92
$\mathrm{THF}+\mathrm{Methylthiazol-2-ylidenes}$	0.634	148	1352
exp.	0.456	123	_

Table 40: Thermodynamic data calculated for pure THF and THF with an additive of 10 mol% of different carbenes.

7 Sum of Partial Atomic Charges on the Ring Atoms

Figure 19: Sum of the partial atomic charges on atoms CC/L, NA, CA, HA of **1** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 20: Sum of the partial atomic charges on atoms CC/L, NA, S, CW, HA of **2** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 21: Sum of the partial atomic charges on atoms CC/L, NA, CR, HA of **3** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 22: Sum of the partial atomic charges on atoms CC/L, NA, CW, CR, HA of **4** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 23: Sum of the partial atomic charges on atoms CC/L, NA, CT_{ring} , $H1_{ring}$ of 5 with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 24: Sum of the partial atomic charges on atoms CC/L, NA, CA, HA of **6** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 25: Sum of the partial atomic charges on atoms CC/L, NA, CT_{ring} , HC_{ring} , and the methylgroups bonded on the ring of 7 with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 26: Sum of the partial atomic charges on atoms CC/L, CA, NA, and the methoxy groups bonded on the ring of 8 with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.

Figure 27: Sum of the partial atomic charges on atoms CC/L, CA, NA of **9** with different R in different conformations. The line serves as a guide to the eye and marks the charge of the unit in the force field.