PCCP

"Bottom-up" Self-assembly and "Cold Crystallization" of Butterfly Shaped Tetrabenzofluorene Molecules**

Srinivasan Sampath,^{a,b}*A. A. Boopathi^a and A. B. Mandal^{a,c}*

- a. Polymer laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, INDIA.
- b. Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, INDIA.
- c. Chemical laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, INDIA
- * sampathsrinivasan@yahoo.com, ssrinivasan@clri.res.in; abmandal@hotmail.com, abmandal@clri.res.in
- [**] This research was financially supported by DST-INSPIRE Faculty Award (IFA13-CH130). S.S and A.A.B acknowledge DST for the fellowship. We thank Dr. N. Somanathan, Dr. T. Narasimhaswamy and Dr. S. N. Jaisankar for the fruitful discussion. We thank Chemical Physics, Bio-physics, Chemical and Organic laboratories in CSIR-CLRI and CSIF in CSIR-CLRI, IIT-Madras and Madras University for sample analysis. We thank Dr. E. Bhoje Gowd, NIIST-Trivandrum for variable temperature PXRD analysis.

Experimental Details

Supplementary Information

Table of Contents

Section A. NMR studies of 1 and 2	S4
Fig. S1. ¹ H NMR spectrum of 1 in $CDCl_3$	
Fig. S2. ¹³ C NMR spectrum of 1 in $CDCl_3$	
Fig. S3. ¹ H- ¹ H DQF COSY NMR spectrum of 1 in $CDCl_3$	
Fig. S4. ¹ H- ¹³ C HSQC NMR spectrum of 1 in CDCl ₃	
Fig. S5. ¹ H NMR spectrum of 2 in $CDCl_3$	
Fig. S6. ¹³ C NMR spectrum of 2 in $CDCl_3$	
Fig. S7. ¹ H- ¹ H DQF COSY NMR spectrum of 2 in $CDCl_3$	
Fig. S8. ¹ H- ¹³ C HSQC NMR spectrum of 2 in $CDCl_3$	
Section B. Single crystal X-ray structure of 1	S10
Fig. S9. Crystal structure of 1 and hydrogen bonding interactions	
Table S1. Hydrogen bond geometry for 1	
Fig. S10 . Crystal structure of 1 showing intermolecular π - π stacking	
Fig. S11. Crystal structure of 1 showing the molecular packing	
Section C. Powder X-ray diffraction spectra of 1 and 2	S13
Fig. S12. Powder X-ray diffraction spectra of 1 and 2	
Fig. S13. PXRD spectra of 1 after heating and cooling cycle in DSC	
Section D. Thermogravimetric analysis (TGA) spectra of 1 and 2 (Fig. S14)	S14
Section E. Differential scanning calorimetric (DSC) spectra and	
Hot-stage polarising microscopy (HOPM) images of 1 and 2	S15
Fig. S15. DSC trace and HOPM images of 1 at first heating and cooling	
Fig. S16. DSC trace and HOPM images of 1 at second heating and cooling	
Fig. S17. DSC trace of 2 at first heating cycle	

Fig. S18. DSC spectra of 1 as a function of heating rate
Table S2. DSC spectra details of 1 as a function of heating rate
Fig. S19. DSC spectra of 1 as a function of cooling rate
Fig. S20. DSC spectra of 1 as a function of sample weight

Section F. NMR studies of 1 after DSC experiment

Fig. S21. ¹*H NMR spectrum of 1 in CDCl*₃ after heating and cooling cycle in DSC *Fig. S22.* ¹³*C NMR spectrum of 1 in CDCl*₃ after heating and cooling cycle in DSC

Section G. Optical studies of 1 and 2

Fig. S23. Absorption and Fluorescence spectra of 1 in different solvents
Fig. S24. Absorption and Fluorescence spectra of 2 in different solvents
Fig. S25. Absorption and Fluorescence spectra of 2 in water-THF mxitures
Fig. S26. Fluorescence decay curves of 1 and 2 in THF solution
Table S3. Photophysical properties of 1 in various solvents
Table S4. Photophysical properties of 2 in various solvents
Table S5. Photophysical properties of 1 and 2 in THF solution

Section H. Dynamic light scattering spectra of 1 and 2	S24
Fig. S27. DLS spectra of 1 in THF and water-THF mixtures	
Fig. S28. DLS spectra of 2 in THF and water-THF mixtures	
Section I. Microscopic images of 1 and 2	S26

Fig. S29. HRTEM images of 1 and particle size distribution graph
Fig. S30. HRTEM images of 1 at various location and magnification
Fig. S31. FESEM images of 1 and 2 from water-THF mixture
Fig. S32. AFM images of 1 from water-THF mixture
Fig. S33. AFM images of 1 from toluene
Fig. S34. FESEM images of 1 and 2 from toluene

Section J. References

S17

S20

Section A. NMR studies of 1 and 2

Fig. S1. ¹H NMR spectrum of 1 in CDCl₃ at 298 K. x : water and acetone

Fig. S2. ¹³C NMR spectrum of 1 in CDCl₃ at 298 K.

Fig. S3. ¹H-¹H DQF COSY NMR spectrum of **1** in CDCl₃ at 298 K.

Fig. S4. ¹H- ¹³C HSQC NMR spectrum of 1 in CDCl₃ at 298 K.

Fig. S5. ¹H NMR spectrum of 2 in CDCl₃ at 298 K. x : dichloromethane and acetone.

Fig. S6. ¹³C NMR spectrum of 2 in CDCl₃ at 298 K.

Fig. S7. ¹H-¹H DQF COSY NMR spectrum of **2** in CDCl₃ at 298 K.

Fig. S8. ¹H-¹³C HSQC NMR spectrum of **1** in CDCl₃ at 298 K.

Section B. Single crystal X-ray structure of 1

Fig. S9. Single crystal X-ray structure of **1** a) and b) shows the labelling of carbon atoms. c) shows the distance between C29 and H32, d) shows the intermolecular distance between C7 and H27 and e) shows the distance between O1 and H9.

S.	D–H····A	D–H	Н…∙А	DA	D–H····A	Symmetry
No		(Å)	(Å)	(Å)	(°)	code: (i)
1	С27–Н27…С7	0.981	2.855	3.654	139.19	1-x,3-y,1-z
2	С9–Н9••••О1	0.930	2.674	3.536	154.45	x, -1+y, z
3	С32–Н32····С29	0.930	2.878	3.356	113.29	x, y, z

 Table S1. Hydrogen bond geometry for 1.

Fig. S10. Single crystal X-ray structure of **1** a) and b) shows the intermolecular π - π stacking.

Fig. S11. Single crystal X-ray structure of **1** a) shows the molecular packing and b) shows the intermolecular distance between the planes of C40 to C45 alkyl chain.

Section C. Powder X-ray Diffraction spectra of 1 and 2

Fig. S12. Powder X-ray diffraction spectra of a) 1 and b) 2.

Section D. TGA spectra of 1 and 2

Fig. S14. TGA curves of 1 and 2 at heating rate of 10 °C/min under N_2 atmosphere.

Section E. DSC spectra and HOPM images of 1 and 2

Fig. S15. DSC trace of 1 at heating and cooling cycle at 5 °C/min under N_2 atmosphere (first cycle). The inset shows the HOPM images at respective transition temperature in both heating and cooling cycle. HOPM images were recorded by placing the sample between glass covers on a temperature controlled hot stage

Fig. S16. DSC trace of 1 at heating and cooling cycle at 5 °C/min under N_2 atmosphere (second cycle). The inset shows the HOPM images at respective transition temperature in both heating and cooling cycle. HOPM images were recorded by placing the sample between glass covers on a temperature controlled hot stage.

Fig. S17. DSC trace of 2 at heating and cooling cycle at 5 °C/min under N_2 atmosphere (first cycle).

Fig. S18. The effect of heating rate on the cooling traces of 1 are studied by keeping the cooling rate constant (10 °C/min) and varying the previous step heating rates. a) Heating traces of 1 with varying heating rates while the cooling rate is kept constant at 10 °C/min.a) All cooling traces at a cooling rate of 10 °C/min, however, the different color curves indicate their earlier step's heating rate.

S. No	λ (K/min)	$T_p(K)$
1	2	371.8
2	5	385.2
3	10	397.8
4	20	409.3
5	30	416.3
6	40	421.2
7	50	425.4

 Table S2. DSC spectra details of 1 as a function of heating rate.

Kissinger equation:¹

 $\ln(\lambda/T_p^2) = -E_a/RT_p + C \quad \dots \dots \quad 1$

Where *R* is gas constant, T_p is crystallization peak temperature, λ is DSC heating rate, E_a is the crystallization activation energy and *C* is a constant.¹ The slope of $\ln(\lambda/T_p^2)$ vs $1/T_p$ gives the value for E_a/R . The calculated E_a is 71 ± 0.8 kJ/mol ($R^2 = 0.999$).

Fig. S19. The effect of cooling rate on the heating traces of 1 are studied by keeping the heating rate constant (10 °C/min) and varying the previous step's cooling rates. a) All heating traces at a heating rate of 10 °C/min, however, the different color curves indicate their earlier step's cooling rate. b) Cooling traces of 1 with varying cooling rates while the heating rate is kept constant at 10 °C/min.

Fig. S20. DSC trace of 1 at heating and cooling cycle at 10 °C/min under N_2 atmosphere with different sample weight in the range of 1.2 mg to 4.5 mg (second cycle). The peak positions have negligible changes or trend with increase in the sample weight in the above analysed weight range.

Section F. NMR studies of 1 after DSC experiment

Fig. S21. ¹H NMR spectrum of 1 in CDCl₃ at 298 K. Sample preparation for ¹H NMR after DSC experiment, 1 was first subjected to heating up to 210 °C and subsequent cooling back to 25 °C with heating and cooling rate of 5 °C/min under N₂ atmosphere and then dissolved in CDCl₃.

Fig. S22. ¹³C NMR spectrum of **1** in CDCl₃ at 298 K. Sample preparation for ¹³C NMR after DSC experiment, **1** was first subjected to heating up to 210 °C and subsequent cooling back to 25 °C with heating and cooling rate of 5 °C/min under N_2 atmosphere and then dissolved in CDCl₃.

Section G. Optical studies of 1 and 2

Fig. S23. a) Absorption and b) Fluorescence spectra of **1** in dichloromethane (DCM), tetrahydrofuran (THF), hexane, cyclohexane, toluene and dimethylformamide (DMF) at 25 °C. λ_{ex} =360 nm (l = 1 cm, $c = 1 \times 10^{-5}$ M).

Fig. S24. a) Absorption and b) Fluorescence spectra of **2** in dichloromethane (DCM), tetrahydrofuran (THF), toluene and dimethylformamide (DMF) at 25 °C. λ_{ex} =360 nm (l = 1 cm, $c = 1 \times 10^{-5}$ M).

Fig. S25. a) Absorption and b) Fluorescence spectra of 2 in various tetrahydrofuran (THF) water mixture ratio (From 0 % water to 70 % water in THF) at 25 °C. λ_{ex} =360 nm (l = 1 cm, c = 1 x 10⁻⁵M).

Fig. S26. Fluorescence decay curves of **1** and **2** in THF solution, emission monitored at 430 nm, $\lambda_{ex} = 375$ nm at 25 °C. (l = 1 cm, $c = 1 \times 10^{-5}$ M). Bottom panel shows the residual traces of fluorescence decay curves fitting along with their corresponding χ^2 values.

S.	Solvent	Absorption	Emission	Stokes molar extintion		Quantum
No		Maxima	Maximum	Shift	coefficient (ε) x	Yield
		$\lambda_{ m abs}$	$\lambda_{\rm em}$	$\Delta v_{\rm St} {\rm cm}^{-1}$	10 ⁴ M ⁻¹ cm ⁻¹	$(\Phi_{ m f})$
		(nm)	(nm)			
1	DCM	368, 382	431	3971	5.33	0.32
2	THF	368, 382	431	3971	3.78	0.33
3	Hexane	366, 380	427	3903	3.05	0.35
4	Cycloh-	366, 382	427	3903	3.06	0.33
	-exane					
5	Toluene	370, 384	430	3772	2.63	0.31
6	DMF	368, 382	432	4025	2.22	0.33

Table S3. Optical properties of 1 in various solvents.

[a] $\Delta v_{st} = \lambda_{abs} - \lambda_{em}$, and is the difference in absorption and emission frequencies, or the Stokes shift. $\lambda_{ex} = 360$ nm. Quinine sulphate in 0.5M H₂SO₄ used as quantum yield reference. Fluorescence quantum yields (±5% error) were determined using quinine sulfate as the standard ($\Phi_f = 0.546$ in 0.1 N H₂SO₄).²

Table S4. Optical properties of 2 in various solvents.

S.No	Solvent	Absorption	Emission		molar extintion	Quantum
		Maxima	Maximum	Stokes	coefficient (ε)	Yield $(\Phi_{\rm f})$
		$\lambda_{ m abs}$	$\lambda_{ m em}$	Shift	$X 10^4 M^{-1} cm^{-1}$	
		(nm) _x	(nm)	$\Delta v_{\rm St} {\rm cm}^{-1}$		
1	DCM	368, 378	426	3699	6.04	0.39
2	THF	367, 381	427	3828	3.94	0.38
3	Toluene	368, 380	427	3754	3.26	0.38
4	DMF	366, 380	425	3793	2.16	0.39

[a] $\Delta v_{st} = \lambda_{abs} - \lambda_{em}$, and is the difference in absorption and emission frequencies, or the Stokes shift. $\lambda_{ex} = 360$ nm. Quinine sulphate in 0.5M H₂SO₄ used as quantum yield reference. Fluorescence quantum yields (±5% error) were determined using quinine sulfate as the standard ($\Phi_f = 0.546$ in 0.1 N H₂SO₄).²

Table S5. Optical properties of 1 and 2 in THF solution.

Compound	Quantum	Lifetime	Average	$k_r(s^{-1})$	$k_d(s^{-1})$	k_r/k_d
	Yield $(\Phi_{\rm f})$	τ (ns)	Lifetime τ_{av}			
			(ns)			
1	0.33	1.26 (35 %)	2.54	1.3 x 10 ⁸	2.6 x 10 ⁸	0.50
		2.85 (65 %)				
2	0.38	2.55 (100 %)	-	1.5 x 10 ⁸	2.4×10^8	0.63
1 2	0.33	1.26 (35 %) 2.85 (65 %) 2.55 (100 %)	(ns) 2.54	1.3 x 10 ⁸ 1.5 x 10 ⁸	2.6 x 10 ⁸ 2.4 x 10 ⁸	0.:

The average life time (τ_{av}) of the biexponential decay was calculated based on the equation $\tau_{av} = (a_1\tau_1^2 + a_2\tau_2^2)/(a_1\tau_1 + a_2\tau_2)$, where 'a' is the amplitude and ' τ ' is the corresponding life time of the decay components.³

Fig. S27. Dynamic light scattering (DLS) spectra of **1** in a) THF, b) 10, c) 30 and d) 50% water: THF mixture at 25 °C (l = 1 cm, $c = 1 \times 10^{-5}$ M).

Fig. S28. Dynamic light scattering (DLS) spectra of **2** in **1** in a) THF, b) 10 and c) 30% water: THF mixture at 25 °C (l = 1 cm, $c = 1 \times 10^{-5}$ M).

Section I. Microscopic images of 1 and 2

Fig. S29. a) HRTEM images of 1 drop casted from 1×10^{-4} M water:THF (30:70) solution mixture, b) Particle size distribution bar diagram of 1 obtained by analysing the particle size from HRTEM image of 1.

Fig. S30. a)-d) HRTEM images of **1** drop casted from 1×10^{-4} M water:THF (30:70) solution mixture at various location and magnification. The sample is drop casted on carbon-coated TEM grids and solvents are removed by keeping the samples under vacuum at room temperature for 24 hours.

Fig. S31. FESEM images of a) 1 drop casted from $1x10^{-4}$ M water:THF (30:70) solution mixture, b) 2 drop casted from $1x10^{-4}$ M water:THF (30:70) solution mixture.

Fig. S32. a)-c) AFM images of 1 drop casted from 1×10^{-4} M water:THF (30:70) solution mixture at various magnification. The sample is drop casted on freshly cleaved mica surface and solvents are removed by keeping the samples under vacuum at room temperature for 24 hours.

Fig. S33. a) AFM height images of 1 drop casted from 1×10^{-4} M toluene solution. b) the height profile of line shown in (a). The sample is drop casted on freshly cleaved mica surface and solvent was removed by keeping the samples under vacuum at room temperature for 24 hours.

Fig. S34. a) and b) FESEM images of 1 drop casted from $1x10^{-4}$ M toluene solution at different magnification. c) and d) FESEM images of 2 drop casted from $1x10^{-4}$ M toluene solution at various location and magnification. The samples are drop casted on aluminum foil and solvent was removed by keeping the samples under vacuum at room temperature for 24 hours.

Section J. References

- 1. K. Iwase, Y. Nagano, I. Yoshikawa, H. Houjou, Y. Yamamura and K. Saito, J. Phys. Chem. C, 2014, 118, 27664.
- 2. A. Ajayaghosh, V. K. Praveen, S. Srinivasan and R. Varghese, Adv. Mater., 2007, 19, 411.
- Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York 1999.