Electronic Supplementary Information (ESI) for

Formation and evolution of the unexpected PbI₂ phase at

interface during the growth of evaporated perovskite films

Haitao Xu^a, Yanglin Wu^a, Jian Cui^b, Chaowei Ni^a, Fuzong Xu^a, Jiang Cai^a, Feng Hong^c, Zebo Fang^a, Wenzhen Wang^a, Jiabin Zhu^{c,d}, Linjun Wang^{*a}, Run Xu^{*a} and Fei Xu^{*c,d}

a School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China

b Frontier Institute of Science and Technology, Xi\'an Jiaotong University, 99 Yanxiang Road, Xi\'an 710054, China

c SHU-Solar E R&D Lab, Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, 99 Shangda Road, Shanghai 200444, China

d State Key Laboratory of Surface Physics and of Micro and Nano Photonic Structure (Ministry of Education), Fudan University, 220 Handan Road, Shanghai 200433, China

* Corresponding Authors; Email: ljwang@shu.edu.cn; runxu@staff.shu.edu.cn; feixu@staff.shu.edu.cn

Fig. S1 Schematic diagram of dual-source evaporation system.

Fig. S2 X-ray diffraction patterns of perovskite films deposited under different MAI partial pressure.

Fig. S3 Images of the perovskite films with different thickness deposited on different substrates.

Fig. S4 Surface SEM images of perovskite films with different thickness deposited on ITO substrates. The scale bar is 500 nm.

Fig. S5 X-ray diffraction patterns of perovskite films with different thickness deposited on (a) pedot/ITO, (c) Si and (e) glass substrates. X-ray diffraction patterns of the peak of PbI_2 (001) planes in perovskite films with different thickness deposited on (b) pedot/ITO, (d) Si and (f) glass substrates.

Fig. S6 X-ray diffraction patterns of perovskite films with thickness of 20 nm and 260 nm deposited on FTO/TiO₂/PCBM substrates.

Fig. S7 The principle diagrams of XPS measurements under two different take-off angles. (a) normal take-off angle. (b) 30° take-off angle.

Fig. S8 High resolution XPS core level spectra of Pb 4f and I 3d 5/2 of the 10 nmthick perovskite films under different take-off angle measurements. The bottom is under normal take-off angle and the top is under 30° take-off angle.

Fig. S9 (a) Device structure of designed perovskite solar cells (PSCs) to study the effect of PbI_2 phase at interface on device performance, a deliberately grown PbI_2 buffer layer with different thickness of 0, 5, 10, 20 nm was deposited on the FTO/TiO₂/PCBM substrates. (b) Cross-sectional SEM image of PSCs with a 20 nm-thick PbI_2 buffer layer. (c) XRD patterns of the perovskite films deposited on PbI_2 buffer layer with different thickness. (d) Current-density/voltage curves of the corresponding PSCs.

perovskite processing		source		БТТ	Voc	J _{SC}	FF	PCE	re
vacuum	solution	material	HIL	EIL	(V)	(mA/cm ²)	(%)	(%)	f
coevaporation	/	PbI ₂ +MAI	PEDOT:PSS/PolyTPD	PCBM	1.05	16.12	67	12.04	1
coevaporation	/	PbI ₂ +MAI	PEDOT:PSS/PolyTPD	PCBM	1.07	18.8	63	12.7	2
coevaporation	/	PbI ₂ +MAI	PEDOT:PSS/PolyTPD	PCBM	1.05	15.88	46	7.73	3
coevaporation	/	PbI ₂ +MAI	PEDOT:PSS/PolyTPD	PCBM	1.04	17.6	62	11.4	4
coevaporation		PbI ₂ +MAI	PEDOT:PSS/PCDTBT	PCBM/ LiF	1.05	21.9	72	16.5	5
coevaporation	/	PbI ₂ +MAI	spiro-MeOTAD	TiO ₂	1.1	18	70	13	6
coevaporation	/	PbCl ₂ +MAI	PEDOT:PSS	PCBM	0.97	17.3	63	10.5	7
coevaporation	/	PbCl ₂ +MAI	spiro-MeOTAD	C60	0.78	14.4	69	7.8	8
coevaporation	/	PbCl ₂ +MAI	NiO	PCBM	0.79	14.2	65	7.26	9
coevaporation	/	PbCl ₂ +MAI	spiro-MeOTAD	TiO ₂	1.07	21.5	68	15.4	10
hybrid deposition	/	PbCl ₂ +MAI	spiro-MeOTAD	TiO ₂	1.09	17	54	9.9	11
hybrid deposition	/	PbCl ₂ +MAI	spiro-MeOTAD	TiO ₂	1.01	12.82	66.	8.64	12
/	one-step	PbCl ₂ +MAI	spiro-MeOTAD	TiO ₂	1.13	22.75	75	19.3	13
/	one-step (moisture)	PbCl ₂ +MAI	PEDOT:PSS	PCBM/ PFN	1.05	20.3	80.2	17.1	14
/	one-step	PbI ₂ +MAI	PEDOT:PSS	PCBM	1.1	20.9	79	18.2	15
/	one-step (hot-casting)	PbI ₂ +MAI	PEDOT:PSS	РСВМ	0.94	22.4	83	17.4	16
/	one-step	PbI ₂ +MAI	PEDOT:PSS	PCBM	0.89	18.85	80	13.37	17
/	solvent	PbI ₂ +MAI	NiO	PCBM	1.06	20.2	81.3	17.3	18

Table S1 Performance of most vacuum-based PSCs and solution-based PSCs with similar structure and sourse material to vacuum-based PSCs, which can be used to compare.

References

- 1 O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin and H. J. Bolink, *Nat. Photonics* 2014, **8**, 128-132.
- C. Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig,
 E. Bandiello, M. Scheepers, E. Edri and H. J. Bolink, *APL Mater.* 2014, 2, 081504.
- 3 C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho and H. J. Bolink, *Energy Environ. Sci.*, 2014, 7, 2968-2973.
- 4 O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Camacho, M. K. Nazeeruddin and H. J. Bolink, *Adv. Energy Mater.* 2014, **4**, 1400345.
- 5 Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn and P. Meredith, *Nat. Photonics* 2015, **9**, 106–112.
- 6 J. Teuscher, A. Ulianov, O. Muntener, M. Grätzel and N. Tetreault, *Chem. Sus. Chem.* 2015, **8**, 3847-3852.
- 7 C. Gao, J. Liu, C. Liao, Q. Ye, Y. Zhang, X. He, X. Guo, J. Mei and W. Lau, *RSC Adv.* 2015, 5, 26175-26180.
- 8 L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner and K. Leo, *APL Mater*. 2014, 2, 081503.
- 9 A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes and S. K. Sarkar, J. *Phys. Chem. Lett.* 2014, **5**, 1748-1753.
- 10 M. Liu, M. B. Johnston and H. J. Snaith, *Nature* 2013, **501**, 395-398.
- 11 L. K. Ono, S. Wang, Y. Kato, S. R. Raga and Y. Qi, *Energy Environ. Sci.* 2014, 7, 3989-3993.
- 12 S. Wang, L. K. Ono, M. R. Leyden, Y. Kato, S. R. Raga, M. V. Lee and Y. Qi, J. Mater. Chem. A 2015, 3, 14631-14641.
- 13 H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, *Science* 2014, **345**, 542-546.
- 14 J. You, Y. Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. H. Chang, G. Li and Y. Yang, *Appl. Phys. Lett.* 2014, **105**, 183902.
- 15 J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, *Energy Environ. Sci.* 2015, 8, 1602-1608.
- 16 W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang and A. D. Mohite, *Science* 2015, **347**, 522-525.
- 17 P. W. Liang, C. C. Chueh, S. T. Williams and A. K.-Y. Jen, *Adv. Energy Mater.* 2015, **5**, 1402321.
- 18 J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok, *Adv. Mater.* 2015, 27, 4013–4019.