Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supplemental Information

Defects induced tunable near infrared emission of \mbox{Er} - \mbox{CeO}_2 by

heterovalent co - dopants

Mihaela Florea,^a Daniel Avram,^b Bogdan Cojocaru,^a Ion Tiseanu,^b Vasile Parvulescu^a and Carmen Tiseanu^{*b}

^a University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, 4-

12 Regina Elisabeta Bvd., Bucharest, Romania

^b National Institute for Laser, Plasma and Radiation Physics, P.O.Box MG-36, RO 76900, Bucharest-Magurele, Romania

*E-mail: tiseanuc@yahoo.com, carmen.tiseanu@inflpr.ro

Fig. S1. Effects of La (a) and Li (b) co - doping on the phase and crystallite size (XRD patterns) of Er - CeO₂.

Fig. S2. Effects of La (a, c) and Li (b, d) co - doping on DR/UV-Vis spectra of Er - CeO_2

Concentration of La/Li	Relative intensity of CT band intensity		Peak value of CT band
	estimated form excitation spectra ^a		
			_
	$\lambda_{em} = 545 \text{ nm}$	$\lambda_{em} = 675 \text{ nm}$	
Er20La	1.9 (7 %)	20.0 (8 %)	~374 nm
Er10La	2.5 (9 %)	27.1 (11 %)	~363 nm
Er5La	6.5 (23 %)	54.2 (21 %)	~365 nm
Er (1000)	28.8 (100 %)	259.0 (100 %)	~360 nm
Er (800)	21.8 (100 %)	118.4 (100 %)	~360 nm
Er5Li	10.1 (46 %)	69.9 (59 %)	~370 nm
Er10Li	14.0 (64 %)	103.9 (88 %)	~370 nm
Er15Li ^b	21.4 (98 %)	247.7 (209 %)	~370 nm

Table S1. Effects of La/Li co - doping on the intensity and peak value of charge –transfer band of Er - CeO_2

^a All the excitation spectra were normalized to f - f absorption of Er at 488 nm.

Fig. S3 Effects of La (a) and Li (b) co - doping on the charge – transfer (CT) excited emission decays of $\text{Er} - \text{CeO}_2$ measured at 545 nm.

Fig. S4. Near - infrared emission at 1500 nm of $Er10Li - CeO_2$ measured under X-ray excitation.

Fig. S5. Effects of La (a) and Li (b) co - doping on the up – conversion excitation spectra of Er - CeO₂ monitoring the near – infrared emission at 980 nm.

Fig. S6 Integrated up - conversion emission intensities corresponding to 545, 675 and 980 nm based emission of Er as a function of laser energy pulse (excitation wavelength = 1470 nm)

Fig. S7 Time – gated emission spectra of $\text{Er} - \text{CeO}_2$ highlighting the ${}^4\text{S}_{3/2} - {}^4\text{I}_{15/2}$ transition measured at 80 K. Similar Stark splitting patterns and constancy of the (normalised) spectra with delay were found for the La/Li, Er co – doped CeO₂ samples.

Fig. S8. Summary of the comparative analysis of the effects of La/ Li co - doping on XRD patterns (a), Raman spectra (b) emission (c,f)/excitation (d,g) spectra and emission decays (e,h) of $Eu - CeO_2$. Concentrations of Eu and La/ Li are 1 and 10%, respectively. Longer emission decay of $Eu10Li - CeO_2$ compared to those of $Eu10La - CeO_2$ and $Eu - CeO_2$ is due to improved separation of the longer lived isolated Eu center against the shorter – lived Eu - vacancy associate.