Electronic Supplementary Information

Doubly Ionic Hydrogen Bond Interactions Within the Choline Chloride-Urea Deep Eutectic Solvent

Claire R. Ashworth, Richard P. Matthews, Tom Welton and Patricia A. Hunt* Department of Chemistry, Imperial College London, London, SW7 2AZ, UK

ESI Contents:

1. Introduction

- 1.1 Brief introduction to QTAIM
- 1.2 Qualitative NBO diagram for H-bond formation
- 1.3 Correlation between $\rho(r)$ and $\nabla^2 \rho(r)$

2. The Choline Cation

- 2.1 Relative Energies
- 2.2 Partial Charge Analysis of Gauche Choline
- 2.3 H-Bond Data
- 2.4 Discussion: Why is the gauche conformer lower in energy?

3. Choline-Chloride Ion Pairs

- 3.1 Relative Energies
- 3.2 Estimation of the Coulomb Interaction
- 3.3 H-Bond Data
- 3.4 Selected QTAIM Molecular Graphs

4. Urea Monomers and Urea Dimers

- 4.1 Conformers and Relative Energies
- 4.2 H-Bond Data

5. Urea-Chloride Complexes Anions

- 5.1 Relative Energies
- 5.2 Structures
- 5.3 Geometries of Urea-Chloride Complexes
- 5.4 H-Bond Data
- 5.5 Selected Molecular Orbitals

6. Choline-Urea Pairs

- 6.1 Relative Energies
- 6.2 H-Bond Data

7. Comparison of H-bonding and Pair Interactions

8. Validation Calculations

1. Introduction

1.1 QTAIM

QTAIM links the topology of the electron density, $\rho(r)$, to concepts of chemical bonding. A chemical bond between two atoms is indicated by the presence of a bond critical point (BCP). A BCP is a saddle point in $\rho(r)$, being a minimum along the atomic interaction line between two bonded atoms and a maximum in the two perpendicular directions. The Laplacian of $\rho(r)$, $\nabla^2 \rho$ (r), provides information about the local curvature of ρ (r). The sign of $\nabla^2 \rho$ (r) together with the sign of the total energy density, H_c, at the BCP provide further information regarding the nature of the interaction. At the extreme ends of the scale, $\nabla^2 \rho$ (r) > 0 and H_c > 0 at the BCP indicates a closed shell interaction, whereas, $\nabla^2 \rho$ (r) < 0 and H_c < 0 is indicative of a covalent bond.¹ The magnitude of $\rho(r)$ at a H-bonding BCP has been linked to the strength of the H-bond and together with the sign and magnitude of both $\nabla^2 \rho(r)$ and H_c has been related to the covalency of the interaction.² ρ_{BCP} and $\nabla^2 \rho_{BCP}$ correspond to $\rho(r)$ and $\nabla^2 \rho(r)$ at the BCP respectively.

- 1. R. Parthasarathi and V. Subramanian, in *Hydrogen Bonding—New Insights*, ed. S. Grabowski, Springer Netherlands, 2006, vol. 3, ch. 1, pp. 1-50.
- 2. S. J. Grabowski, Chemical Reviews, 2011, 111, 2597-2625.

1.2 NBO

Figure S1. Simplified representation of the donor- acceptor interaction between localised NBO fragment orbitals upon H-bond formation (X-H…Y).

1.3 Correlation between ρ_{BCP} and $\nabla^2 \rho_{BCP}$

It was previously suggested that $\nabla^2 \rho_{BCP}$ for weak H-bonds should be small and positive, likely < 0.01 au.¹ Upon further review of the values of $\nabla^2 \rho_{BCP}$ associated with H-bonds defined as weak (using a cut-off in ρ_{BCP} of 0.02 au), and examination of ρ_{BCP} and associated $\nabla^2 \rho_{BCP}$ values for the H-bonds observed here, we have increased the suggested upper bound of $\nabla^2 \rho_{BCP}$ to a value 0.07 au for weak H-bonds.

Figure S2. Correlation between ρ_{BCP}/au and $\nabla^2 \rho_{BCP}/au$ for the H-bonds identified within this work. "Other" H-bond types: NH…O=C, OH…O=C, CH…O=C, intramolecular CH…O(H), NH…N(H) and NH…O(H).

Figure S2 clearly demonstrates that there is a correlation between ρ_{BCP} and $\nabla^2 \rho_{BCP}$ for the H-bonds identified within this work. Such correlations have previously been established for other H-bond systems. Based on the above correlation, and assuming a cut-off in ρ_{BCP} of 0.02 au, an upper limit of 0.07 au for $\nabla^2 \rho_{BCP}$ is tentatively proposed for weak H-bonds. However, for a given value of ρ_{BCP} there is evidently some variation in $\nabla^2 \rho_{BCP}$, or *vice versa*. Additionally, there appears to be two divergent correlations within the data set, becoming more apparent in the moderate to strong H-bond regions. Upon further analysis, it was revealed that the divergent group of data points corresponded solely to H-bonds involving the chloride anion (doubly ionic CH···Cl and OH···Cl, and anionic NH···Cl). This finding could indicate that there is a functional group, and/or charge, dependence in the correlation between ρ_{BCP} and $\nabla^2 \rho_{BCP}$ for H-bonds.

1. P. A. Hunt, C. R. Ashworth and R. P. Matthews, *Chemical Society Reviews*, 2015, 44, 1257-1288, DOI: 10.1039/C4CS00278D.

2. The Choline Cation

2.1 Relative Energies

Choline Conformer	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	G /au	ΔG _{rel} /kJ mol ⁻¹
Gauche	-328.819938	0.00	-328.623147	0.00	-328.655286	0.00
Trans	-328.812538	19.43	-328.616231	18.16	-328.649539	15.09
Trans-rotated [‡]	-328.810428	24.97	-328.614307	23.21	-328.647542	20.33

Table S1. Relative electronic energies (with and without ZPE correction) and relative Gibbs free energies of the choline conformers.

^{*} In order to obtain the trans-rotated conformation, the C-C-O-H torsion angle had to be constrained to 90°, nevertheless vibrational analysis returned no negative frequencies.

2.2. Partial Charge Analysis of Gauche Choline

Both the NBO and CHELPG charge partitioning schemes indicate that the electronegative oxygen atom of the substituent bears a negative partial charge (\approx -0.65 to -0.76 *e*) and that the positive charge is largely distributed over the hydrogen atoms of the alkyl groups.

Figure S3. Atomic numbering scheme used for the choline cation

	q /	/e
	NBO	CHELPG
N^1	-0 347	0.211
C^2	-0.353	-0.250
H^3	0.256	0.170
H^4	0.218	0.139
H^5	0.221	0.147
C^6	-0.358	-0.266
H^7	0.236	0.164
H^8	0.222	0.154
H^{9}	0.228	0.144
C^{10}	-0.347	-0.306
H^{11}	0.227	0.150
H^{12}	0.227	0.165
H^{13}	0.224	0.162
C^{14}	-0.176	-0.161
H^{15}	0.229	0.151
H^{16}	0.228	0.105
C^{17}	-0.053	0.240
H^{18}	0.205	0.065
H ¹⁹	0.177	0.021
O^{20}	-0.757	-0.654
H^{21}	0.493	0.448

Table S2. Partial charge analysis of gauche choline

2.3 H-Bond Data

	Cationic	Neutral
r CHO / Å	2.21	2.54
<i>E</i> ⁽²⁾ / kJ mol ⁻¹	5.23	-
ρ _{BCP} / au	0.0164	0.0103
∇ ² ρ _{BCP} /au	0.0629	0.0366
H _c /au	0.00237	0.00121

Table S3. H-bond lengths (r), $E^{(2)}$ values and selected topological properties of the $\rho(r)$ at the BCPs for the intramolecular H-bond within choline (cationic) and *N*,*N*-dimethylethanolamine (neutral)

Figure S4. CH...OH interaction distances within (a) gauche choline and (b) gauche N,N-dimethylethanolamine

2.4 Discussion: Why is the gauche conformer lower in energy?

 β -substituted ethyltrimethylammonium cations either adopt a trans or gauche conformation with respect to the N-C-C-X torsion angle (X = β substituent). Choline (X=OH) belongs to a sub-class of this type of cation in which the gauche conformation strongly predominates in both the solid and solution phases.¹⁻⁴ Preference for the gauche conformer in the gas phase has also been reported.⁵ In the gas phase the gauche conformer is found here to be ≈ 18 kJ mol⁻¹ lower in energy than the trans conformer.

Based on steric arguments one would anticipate the trans conformer of choline to predominate. For the related neutral analogue of choline, *N*,*N*-dimethylethanolamine, the gauche conformer lies ≈ 2 kJ mol⁻¹ higher in energy than the comparable lowest energy trans conformation (**Table S4**).

<i>N,N-</i> dimethylethanolamine Conformer	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹
Gauche	-289.106672	2.22	-288.953931	2.15
Trans-a	-289.107516	0.00	-288.954748	0.00
Trans-b	-289.105777	4.57	-288.953229	3.99

Table S4. Relative energies of N,N-dimethylethanolamine conformers.

Electronic factors must, therefore, influence the conformation of choline. A favourable, non-specific, electrostatic interaction between the electronegative oxygen and the positive charge distributed over the ammonium head group has

been hypothesised.^{2, 3} The computed partial charge distribution of choline (**Table S2**) supports this hypothesis; the negative oxygen atom "sees" the positive charge smeared out over the periphery of the ammonium head group

The possible contribution of an intramolecular H-bond to stabilisation of the gauche conformer has also been explored. One CH···O distance is notably shorter than the others (**Figure S4**) with a BCP identified, $\rho_{BCP}=0.016$ au (**Table S3**). $\nabla^2 \rho_{BCP}$ and the total energy density are indicative of the formation of a weak, predominantly electrostatic H-bond. *N*,*N*-dimethylethonolamine exhibits a weaker H-bond, (**Figure S4** and **Table S3**), indicating that the positive charge of choline strengthens the intramolecular H-bond, and thus contributes to the preference for the gauche conformation. Only within gauche choline is a $\sigma_{C-H} \rightarrow \sigma_{C-N}^*$ donor-acceptor interaction obtained ($E^{(2)} = 26.5$ kJ mol⁻¹), indicating that hyperconjugation could also be contributing to the stabilisation of the gauche conformer.

Overall, we conclude that the gauche conformer of choline is stabilised by both a non-specific electrostatic interaction and the formation of an intramolecular H-bond. These results indicate that an anisotropic distribution of the overall +1 charge within the cation facilitates the formation of H-bonds, over and above that of the neutral analogue.

- 1. J. Hjortas and H. Sorum, Acta Crystallographica Section B, 1971, 27, 1320-1323.
- 2. P. Partington, J. Feeney and A. S. V. Burgen, Molecular Pharmacology, 1972, 8, 269-277.
- 2. Y. Terui, M. Ueyama, S. Satoh and K. Tori, Tetrahedron, 1974, 30, 1465-1471.
- 4. K. M. Harmon, A. C. Akin, G. F. Avci, L. S. Nowos and M. B. Tierney, Journal of Molecular Structure, 1991, 244, 223-236.
- 5. L. Tanzi, P. Benassi, M. Nardone and F. Ramondo, The Journal of Physical Chemistry A, 2014, 118, 12229-12240.

3. Choline-Chloride Ion Pairs

3.1 Relative Energies

 Table S5. Absolute and relative electronic energies of the choline chloride ion pairs: without any corrections, with ZPE corrections and with both ZPE and CP corrections. Absolute and relative Gibbs free energies of the choline chloride ion pairs.

Ion Pair	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	BSSE /kJ mol ⁻¹	ΔE _{rel} (with ZPE + CP correction) /kJ mol ⁻¹	G /au	ΔG _{rel} /kJ mol ⁻¹
A_ChG	-789.281345	0.000	-789.083878	0.000	3.370	0.000	-789.118673	0.00
B_ChG	-789.281068	0.726	-789.083596	0.739	3.444	0.814	-789.118466	0.54
C_ChG	-789.276470	12.799	-789.079141	12.436	3.146	12.213	-789.114741	10.32
A_ChT	-789.273526	20.529	-789.075726	21.403	3.424	21.457	-789.111892	17.80
D_ChG	-789.269489	31.128	-789.072746	29.227	2.883	28.740	-789.108700	26.18
E_ChG	-789.269206	31.870	-789.072290	30.423	2.738	29.792	-789.108726	26.12
B_ChT	-789.267669	35.906	-789.071038	33.711	2.778	33.119	-789.107688	28.84
C_ChT	-789.266262	39.600	-789.069471	37.825	3.045	37.501	-789.105349	34.98

3.2 Estimation of the Coulomb Interaction

Table S6. Estimated Coulomb interaction within each choline chloride ion pair, assuming the ions are point charges with the positive charge centred on the nitrogen of choline and the negative charge on chloride. The Coulomb potential has been estimated using charges of unity and a reduced charge of $\pm 0.9e$. Δr is the separation between the ions (i.e. the distance between the N centre of choline and Cl), E_a is the total association energy of the ion pair and E_C is the estimated Coulomb potential. ΔE corresponds to the difference between the total association energy and the estimated Coulomb potential.

			 q	= 1 e	q =	• 0.9 e
Ion Pair	Δr (N…Cl)/ Å	E _a /kJ mol ⁻¹	<i>Е</i> С / kJ mol ⁻¹	$\frac{\Delta E (E_{\rm C} - E_{\rm a})}{/\text{kJ mol}^{-1}}$	E _C /kJ mol ⁻¹	$\frac{\Delta E (E_{\rm C} - E_{\rm a})}{/\text{kJ mol}^{-1}}$
A_ChG	3.84	-409	-362	+47	-293	+116
B_ChG	3.60	-408	-386	+22	-313	+95
C_ChG	3.55	-397	-391	+6	-317	+80
A_ChT	3.63	-380	-383	+4	-310	+77
D_ChG	3.59	-379	-387	-7	-314	+66
E_ChG	3.60	-387	-386	-7	-313	+66
B_ChT	3.58	-376	-388	-12	-314	+62
C_ChT	3.77	-371	-369	+2	-299	+72

3.3 H-Bond Data

Table S7. H-bond lengths (r), $E^{(2)}$ values and selected topological properties of the $\rho(r)$ at the BCPs for the individual H-bonds
within the choline chloride ion pairs

	A ChG								
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$ abla^2 ho_{BCP}$ /au	H /au				
Intra CHO(H)	2.519	-	0.0113	0.0417	0.00142				
CHCl (a)	2.417	30.25	0.0180	0.0514	0.00176				
CHCl (b)	2.381	38.24	0.0193	0.0540	0.00167				
OHCl	2.090	89.37	0.0340	0.0722	-0.00315				
		B ChG	۱ ۲						
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} ∕au	$ abla^2 ho_{BCP}$ /au	H /au				
Intra CHO(H)	2.432	-	0.0141	0.0512	0.00157				
CHCl (a)	2.433	26.82	0.0178	0.0513	0.00178				
CHCl (b)	2.714	9.92	0.0109	0.0298	0.00123				
CHCl(c)	2.353	32.47	0.0213	0.0630	0.00170				
OHCl	2.214	59.79	0.0256	0.0622	-0.00011				
	. 0	C_ChG	ſ	2					
H-bond	r/A	$\Sigma E^{(2)}/\text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au				
Intra CHO(H)	2.289	3.77	0.0141	0.0518	0.00190				
CHCl (a)	2.375	34.85	0.0199	0.0561	0.00164				
CHCl (b)	2.532	18.90	0.0150	0.0423	0.00163				
CHCl (c)	2.381	29.54	0.0203	0.0589	0.00173				
	. 9	D_ChG	ſ	2					
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au				
Intra CHO(H)	2.254	4.56	0.0150	0.0573	0.00216				
CHCl (a)	2.444	27.07	0.0174	0.0492	0.00170				
CHCl (b)	2.388	34.35	0.0194	0.0539	0.00164				
CHCl (c)	2.351	37.99	0.0209	0.0584	0.00155				
	. 9	E_ChG	r	2					
H-bond	r/A	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} ∕au	$\nabla^2 \rho_{BCP} / au$	H /au				
Intra CHO(H)	2.319	2.09	0.0141	0.0508	0.00176				
CHCl (a)	2.443	27.66	0.0174	0.0491	0.00170				
CHCl (b)	2.350	39.20	0.0208	0.0572	0.00151				
CHCl (c)	2.356	38.45	0.0206	0.0569	0.00155				
	. 9	A_ChT		2					
H-bond	r/A	$\Sigma E^{(2)}/\text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP}$ /au	H /au				
CHCl (a)	2.378	35.27	0.0196	0.0551	0.00168				
CHCl (b)	2.898	4.85	0.0082	0.0217	0.00084				
CHCl (c)	2.354	30.54	0.0216	0.0651	0.00176				
OHCI	2.545	16.07	0.0133	0.0375	0.00140				
	. •	B_ChT							
H-bond	r/A	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au				
CHCl (a)	2.367	36.53	0.0202	0.0559	0.00157				
CHCl (b)	2.367	36.53	0.0202	0.0559	0.00157				
CHCl (c)	2.382	34.60	0.0196	0.0548	0.00163				
	^	C_ChT		2					
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} ∕au	$\nabla^2 \rho_{BCP}$ /au	H /au				
CHCl (a)	2.312	47.95	0.0224	0.0603	0.00130				
CHCl (b)	2.312	47.70	0.0224	0.0603	0.00129				
CHCl (c)	2.835	1.55	0.0103	0.0354	0.00160				
CHCl (d)	2.835	1.55	0.0103	0.0354	0.00160				

3.4 Selected QTAIM Molecular Graphs

Figure S5. QTAIM molecular graph of chloroform-chloride complex.

4. Urea Monomers and Urea-Urea Dimers

4.1 Conformers and Relative Energies

Figure S6. Conformers of urea.

Table S8. Absolute and relative electronic energies of the urea conformers with and without ZPE correction.

Urea Conformer	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	G /au	ΔG _{rel} /kJ mol ⁻¹
<i>C</i> ₂	-225.353480	0.000	-225.289997	1.357	-225.316305	0.84
$C_{2\nu}$	-225.351956	4.00	-225.290514	0.000	-225.316624	0.00
C_s	-225.352295	3.11	-225.289862	1.712		

Table S9. Absolute and relative electronic energies of the urea-urea dimers: without any corrections, with ZPE corrections and with both ZPE and CP corrections. Absolute and relative Gibbs free energies of the urea-urea dimers.

Dimer	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	BSSE /kJ mol ⁻¹	ΔE_{rel} (with ZPE + CP correction) /kJ mol ⁻¹	G /au	ΔG _{rel} /kJ mol ⁻¹
Ribbon Distorted Chain	-450.732052 -450.728823	0.000 8.476	-450.603139 -450.599592	0.000 9.314	2.193 2.325	0.000 9.446	-450.639159 -450.635657	0.00 9.19

Comment on urea dimer distorted chain motif: Within the distorted chain a chelating H-bond motif is observed where the oxygen atom of one urea interacts with two different hydrogen atoms of the other urea. Each individual interaction is weaker than the analogous interaction in the ribbon dimer, **Figure 6b**. The sum for the combined H-bonding interactions $\Sigma \rho_{BCP} = 0.058$ au. The contributions from the individual urea fragments to any given MO is very unequal, **Figure 6b**. Moreover, the delocalisation between the urea units $E^{(2)}$ only equates to a total of 63.2 kJ mol⁻¹. Thus, there is a substantially reduced degree of delocalisation within the distorted chain motif.

4.2 H-Bond Data

Ribbon										
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au					
NHO=C (a) NHO=C (b)	1.826 1.825	68.53 68.91	0.0332 0.0332	0.1123 0.1124	0.00059 0.00057					
		Distorted C	hain							
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au					
NHO=C (a) NHO=C (b) NHN	1.990 2.397 2.088	26.74 4.52 31.97	0.0229 0.0118 0.0225	0.0838 0.0389 0.0696	0.00232 0.00108 0.00167					

Table S10. H-bond lengths (r), $E^{(2)}$ values and selected topological properties of the $\rho(r)$ at the BCPs for the individual H-bonds within the urea dimers

5. Urea – Chloride Complexed Anions

5.1 Relative Energies

Table S11. Absolute and relative electronic energies of the urea-chloride complexes: without any corrections, with ZPE corrections and with both ZPE and CP corrections. Absolute and relative Gibbs free energies of the urea-chloride complexes.

Complex	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	BSSE /kJ mol ⁻¹	ΔE _{rel} (with ZPE + CP correction) /kJ mol ⁻¹	G /au	∆G _{rel} ∕kJ mol ⁻¹
1.0.0 A	(95 (002)5	0.000	(95 (24904	0.000	1 429	0.000	(95 ((550)	0.00
100 D [‡]	-085.099505	0.000	-083.034804	0.000	1.428	0.000	-085.005590	0.00
1.0.0 ^B	-685.679640	51.790	-685.615991	49.394	1.360	49.325	-685.649291	42.81
2.0.0_A	-911.087208	0.000	-910.958020	0.000	4.186	0.000	-911.004318	0.00
2.0.0_B	-911.086767	1.158	-910.957573	1.174	4.089	1.077	-911.000890	9.00
1.1.0_A	-911.083968	8.507	-910.954439	9.402	3.772	8.987	-910.998429	15.46
1.1.0_B	-911.074102	34.410	-910.944666	35.062	3.980	34.855	-910.986157	47.68
2.1.0_A	-1136.478947	0.000	-1136.281542	0.000	8.642	0.000	-1136.327149	16.22
2.1.0_B	-1136.470841	21.282	-1136.276361	13.602	6.441	11.401	-1136.332518	2.12
2.1.0_C	-1136.469377	25.128	-1136.275091	16.939	6.074	14.370	-1136.330801	6.63
3.0.0_A	-1136.468913	26.344	-1136.275124	16.851	6.486	14.694	-1136.333325	0.00
1.1.1_A	-1136.466189	33.496	-1136.271542	26.255	6.070	23.683	-1136.325532	20.46
2.1.0_D	-1136.462255	43.825	-1136.267980	35.607	6.286	33.251	-1136.323846	24.89
1.2.0_A	-1136.465543	35.193	-1136.268539	34.140	8.009	33.507	-1136.315468	46.88
2.1.0_E	-1136.462038	44.394	-1136.267728	36.268	6.363	33.988	-1136.321318	31.52
1.1.1_B	-1136.459629	50.719	-1136.264902	43.688	6.001	41.056	-1136.318422	39.13
1.1.1_C	-1136.454424	64.385	-1136.259575	57.674	6.543	55.575	-1136.310453	60.05
1.2.0_A	-1136.448052	81.116	-1136.253382	73.935	6.436	71.729	-1136.304608	75.40

^{*} Structure 1.0.0_B can be obtained at the B3LYP level without constraints. Re-optimisation of B3LYP 1.0.0_B with inclusion of the D2 dispersion correction returned a structure with the chelating H-bond motif (i.e. 1.0.0_A). To isolate 1.0.0_B at the B3LYP-D2 level it was necessary to constrain the NH···Cl distance; vibrational analysis of this structure returned no negative frequencies.

Figure S7. Urea-chloride complexes.

5.3 Geometries of Urea-Chloride Complexes

The simplified representations of the urea-chloride complexes do not illustrate the full complexity of the geometries of these structures. For example, the four NH···Cl H-bonds in structure 2.0.0_A are in a tetrahedral arrangement about the chloride centre, **Figure S8 a**. Within structure 2.0.0_B, the two urea molecules are found to have "slipped" closer together, leaving one side of chloride exposed, **Figure S8 b**. Structure 2.0.0_B therefore appears to be the intermediate between tetrahedral 2.0.0_A and the distorted octahedral structure of 3.0.0, **Figure S8 c**. Furthermore, the geometry of urea shows some variation within the complexes, adopting predominantly either a C_s or C_2 conformation, and almost exclusively the C_s conformation when directly coordinated to chloride.

Cooperative effects are thought to influence the geometry of urea oligomers, stabilising the chain motif for larger aggregates.^{1,2} At the Hartree-Fock level it is estimated that for tetramers and above the energy for the successive addition of urea favours the chain motif.¹ Within the *n*.urea-chloride complexes, n=2,3, it is found that the urea-urea chain motif is favoured over the ribbon, despite the latter being energetically favoured when isolated. For example, structure 1.1.0_A (chain) is ≈ 26 kJ mol⁻¹ lower in energy than structure 1.1.0_B (ribbon). This would suggest that chloride enhances the cooperative effect in these short urea chains.

Furthermore, the urea-urea interaction within 1.1.0_A (**Figure S9 a**) is a linear, rather than distorted, chain motif, again indicating cooperative effects within the [chloride-urea-urea] unit. However, this effect is short ranged. For example, within structure 1.1.1_A, **Figure S9 b**, the chain interaction between urea in the 2nd and 3rd coordination shells is distorted. The influence of chloride on the urea-urea chain interaction can also be attenuated by complexing chloride to another urea, e.g. 2.1.0_B, **Figure S9 c**. In this case, the chloride can be thought of as effectively being "pulled" in two opposite directions (reducing its long-range effect in one direction).

Figure S8. Geometry of selected urea-chloride complexes

Figure S9. Examples of urea-chloride complexes featuring the linear and distorted chain motifs

- 1. A. Masunov and J. J. Dannenburg, The Journal of Physical Chemistry B, 2001, 104, 806-810
- 2. J. J. Dannenburg, Journal of Molecular Structure, 2002, 615, 219-226

5.4 H-Bond Data

1.0.0_A							
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.321	43.10	0.0203	0.0555	0.00137		
NHCl(b)	2.322	42.89	0.0203	0.0555	0.00137		
		1.0.0	0_B				
H-bond	r/Å	ΣE⁽²⁾/ kJ mol⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.320	38.58	0.0203	0.0577	0.00154		
		2.0.0	0_A				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.382	29.83	0.0174	0.0510	0.00170		
NHCl (b)	2.379	32.84	0.0175	0.0512	0.00171		
NHCl (c)	2.381	31.38	0.0174	0.0510	0.00170		
NHCl (d)	2.380	32.22	0.0175	0.0511	0.00171		
		2.0.0	0_B				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.34385	37.15	0.0193	0.0549	0.00156		
NHCl (b)	2.36547	35.31	0.0183	0.0528	0.00168		
NHCl (c)	2.50221	20.38	0.0142	0.0415	0.00172		
NHCl (d)	2.36629	34.52	0.0180	0.0521	0.00173		
		1.1.0	0_A				
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.252	55.69	0.0236	0.0613	0.00072		
NHCl(b)	2.253	55.40	0.0235	0.0612	0.00074		
NHO=C (a)	1.968	31.25	0.0234	0.0903	0.00262		
NHO=C (b)	1.968	31.17	0.0235	0.0905	0.00262		
	0	1.1.0	0_B	2			
H-bond	r/A	$\Sigma E^{(2)}/k \text{ I mol}^{-1}$	Op.cp/911	$\nabla^2 \mathbf{O}_{\mathbf{PCP}} / \mathbf{a} \mathbf{u}$	H /au		
			PBCP/ uu	PBCF			
NHCl (a)	2.406	40.67	0.0170	0.0485	0.00174		
NHCl (a) NHCl (b)	2.406 2.236	40.67 59.83	0.0170 0.0243	0.0485 0.0624	0.00174 0.00054		
NHCl (a) NHCl (b) NHO=C (a)	2.406 2.236 2.077	40.67 59.83 26.48	0.0170 0.0243 0.0188 0.0464	0.0485 0.0624 0.0664 0.1330	0.00174 0.00054 0.00219 0.00047		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b)	2.406 2.236 2.077 1.697	40.67 59.83 26.48 118.16	0.0170 0.0243 0.0188 0.0464	0.0485 0.0624 0.0664 0.1330	0.00174 0.00054 0.00219 -0.00047		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b)	2.406 2.236 2.077 1.697	40.67 59.83 26.48 118.16 2.1. (0.0170 0.0243 0.0188 0.0464	0.0485 0.0624 0.0664 0.1330	0.00174 0.00054 0.00219 -0.00047		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond	2.406 2.236 2.077 1.697	$\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{\Sigma E^{(2)}/\text{ kJ mol}^{-1}}$	0.0170 0.0243 0.0188 0.0464	0.0485 0.0624 0.0664 0.1330	0.00174 0.00054 0.00219 -0.00047		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NH. Cl (a)	2.406 2.236 2.077 1.697 r/Å 2.594	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$ 14.77	0.0170 0.0243 0.0188 0.0464 О_А <u>р_{вср}/аи</u> 0.0120	$\frac{0.0485}{0.0624}$ 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$ 14.77 35.61	0.0170 0.0243 0.0188 0.0464 Δ_A <u>ρ_{BCP}/au</u> 0.0120 0.0191	$\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$	0.00174 0.00054 0.00219 -0.00047 <u>H /au</u> 0.00096 0.00154		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$ 14.77 35.61 37.11	0.0170 0.0243 0.0188 0.0464 Δ_A 0.0120 0.0120 0.0191 0.0184	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525	0.00174 0.00054 0.00219 -0.00047 <u>H /au</u> 0.00096 0.00154 0.00165		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$ 14.77 35.61 37.11 34.02	0.0170 0.0243 0.0188 0.0464 0_A <u>ρ_{BCP}/au</u> 0.0120 0.0191 0.0184 0.0181	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHCl (d) NHCl (a)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2}$ $\frac{52E^{(2)}/\text{ kJ mol}^{-1}}{14.77}$ $\frac{14.77}{35.61}$ 37.11 34.02 34.52	$\begin{array}{r} \rho_{BCP}/4u \\ \hline 0.0170 \\ 0.0243 \\ 0.0188 \\ 0.0464 \\ \hline 0_A \\ \hline \hline \rho_{BCP}/au \\ \hline 0.0120 \\ 0.0191 \\ 0.0184 \\ 0.0181 \\ 0.0248 \\ \hline \end{array}$	$\frac{0.0485}{0.0624}$ 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHCl (d) NHCl (a) NHCl (b)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2}$ $\frac{52E^{(2)}/\text{ kJ mol}^{-1}}{14.77}$ $\frac{14.77}{35.61}$ 37.11 34.02 34.52 23.97	$\begin{array}{c} \rho_{BCP}/au \\ \hline 0.0170 \\ 0.0243 \\ 0.0188 \\ 0.0464 \\ \hline \end{array} \\ \hline \begin{array}{c} \rho_{BCP}/au \\ \hline 0.0120 \\ 0.0191 \\ 0.0184 \\ 0.0181 \\ 0.0248 \\ 0.0208 \\ \hline \end{array} \\ \end{array}$	$\frac{1}{\sqrt{2}\rho_{BCP}/au}$ 0.0485 0.0624 0.0664 0.1330 0.0357 0.0534 0.0525 0.0512 0.0857 0.0728	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHCl (d) NHO=C (a) NHO=C (b) NHO=C (c)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\frac{222}{10.00} \times 10^{-1}$ $\frac{14.77}{35.61}$ 37.11 34.02 34.52 23.97 15.36	ρ _B (p) Ru 0.0170 0.0243 0.0188 0.0464 ρ _{BCP} /au 0.0120 0.0191 0.0184 0.0243 0.0181 0.0243	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00149		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHO=C (a) NHO=C (b) NHO=C (c) NHO=C (d)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$ $\frac{14.77}{35.61}$ 37.11 34.02 34.52 23.97 15.36 17.95	0.0170 0.0243 0.0188 0.0464 0_A 0.0120 0.0191 0.0184 0.0181 0.0248 0.0208 0.0181 0.0208 0.0181 0.0205	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0727	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00165 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHCl (d) NHO=C (a) NHO=C (c) NHO=C (c) NHO=C (d) NHN (a)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.792	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2.50}$ $\frac{2.1.0}{2.1.1}$ $\frac{2.1.0}{35.61}$ $\frac{37.11}{34.02}$ $\frac{34.52}{34.52}$ 23.97 15.36 17.95 1.72 0.82	0.0170 0.0243 0.0188 0.0464 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0728 0.0597 0.0727 0.0280 0.0249	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203 0.00096 0.00100		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHO=C (a) NHO=C (c) NHO=C (d) NHN (a) NHN (b)	2.406 2.236 2.077 1.697 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2.50}$ $\frac{52E^{(2)}/kJ \text{ mol}^{-1}}{14.77}$ $\frac{14.77}{35.61}$ $\frac{37.11}{34.02}$ $\frac{34.52}{23.97}$ 15.36 17.95 1.72 0.88	0.0170 0.0243 0.0188 0.0464 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	$\begin{array}{c} & \rho_{BCP}/au \\ & 0.0485 \\ & 0.0624 \\ & 0.0664 \\ & 0.1330 \end{array}$	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00213 0.00203 0.00096 0.00100		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHCl (d) NHO=C (a) NHO=C (b) NHO=C (c) NHN (a) NHN (b)	2.406 2.236 2.077 1.697 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2}$ $\frac{52E^{(2)}/\text{ kJ mol}^{-1}}{14.77}$ $\frac{14.77}{35.61}$ 37.11 34.02 34.52 23.97 15.36 17.95 1.72 0.88 $2.1.0$	0.0170 0.0243 0.0188 0.0464 0_A 0_BCP/au 0.0120 0.0191 0.0184 0.0248 0.0208 0.0208 0.0181 0.0205 0.0085 0.0068 0_B	$\frac{\nabla^2 \rho_{BCP}}{\partial 0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP}}{\partial 0.0534}$ 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP}}{\partial 0.0248}$	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203 0.00096 0.00100		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHCl (d) NHO=C (a) NHO=C (b) NHO=C (c) NHO=C (d) NHN (a) NHN (b) H-bond	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$ 14.77 35.61 37.11 34.02 34.52 23.97 15.36 17.95 1.72 0.88 $2.1.0$ $\Sigma E^{(2)} / \text{ kJ mol}^{-1}$	ρ _B (p) Au 0.0170 0.0243 0.0188 0.0464 ρ _{BCP} /au 0.0120 0.0191 0.0184 0.0243 0.0191 0.0181 0.0208 0.0181 0.0205 0.0085 0.0068 0 _B	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP} / au}{0.0248}$	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00213 0.00149 0.00203 0.00096 0.00100 H /au		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHO=C (a) NHO=C (c) NHO=C (c) NHO=C (d) NHN (a) NHN (b) H-bond NHCl (a)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.393 2.301	$\frac{222}{40.67}$ $\frac{40.67}{59.83}$ 26.48 118.16 $\frac{2.1.0}{2}$ $\frac{\Sigma E^{(2)}/\text{ kJ mol}^{-1}}{14.77}$ 35.61 37.11 34.02 34.52 23.97 15.36 17.95 1.72 0.88 $2.1.0$ $\Sigma E^{(2)}/\text{ kJ mol}^{-1}$ 30.13 20.26	ρ _B (p) Au 0.0170 0.0243 0.0188 0.0464 ρ _{BCP} /au 0.0120 0.0191 0.0184 0.0243 0.0120 0.0181 0.0248 0.0208 0.0181 0.0205 0.0085 0.0068 ρ BCP/au 0.0169 0.0170	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP} / au}{0.0500}$	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203 0.00096 0.00196 0.00176 0.00176 0.00176		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d) NHO=C (a) NHO=C (c) NHO=C (c) NHO=C (d) NHN (a) NHN (b) H-bond NHCl (a) NHCl (a) NHCl (a)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.391 2.292	$\begin{array}{r} 222 & 7 \text{ k5 mol} \\ & 40.67 \\ & 59.83 \\ & 26.48 \\ & 118.16 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \text{ kJ mol}^{-1} \\ & 14.77 \\ & 35.61 \\ & 37.11 \\ & 34.02 \\ & 34.52 \\ & 23.97 \\ & 15.36 \\ & 17.95 \\ & 1.72 \\ & 0.88 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \text{ kJ mol}^{-1} \\ & 30.13 \\ & 30.96 \\ & 45.48 \end{array}$	0.0170 0.0243 0.0188 0.0464 0 0 0 0.0120 0.0120 0.0191 0.0184 0.0181 0.0248 0.0208 0.0181 0.0205 0.0085 0.0085 0.0068 0 B ρ _{BCP} /au 0.0169 0.0170 0.0211	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP} / au}{0.0500}$ 0.0503 0.0503 0.0500	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203 0.00096 0.00100 H /au 0.00176 0.00176 0.00176		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHO=C (a) NHO=C (c) NHO=C (c) NHO=C (d) NHN (a) NHN (a) NHN (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (d)	2.406 2.236 2.077 1.697 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.391 2.293 2.368	$\begin{array}{r} 222 & 7 \ \text{k} \text{s} \ \text{fill} \\ & 40.67 \\ & 59.83 \\ & 26.48 \\ & 118.16 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline & 34.52 \\ & 23.97 \\ & 15.36 \\ & 17.95 \\ & 1.72 \\ & 0.88 \\ \hline & 2.1.0 \\ \hline & 2E^{(2)}/ \ \text{k} \text{J} \ \text{mol}^{-1} \\ \hline & 30.13 \\ & 30.96 \\ & 45.48 \\ & 32.97 \end{array}$	0.0170 0.0243 0.0188 0.0464 Δ Δ Δ Φ _{BCP} /au 0.0120 0.0191 0.0184 0.0248 0.0248 0.0248 0.0205 0.0085 0.0085 0.0068 Δ Β Φ _{BCP} /au 0.0169 0.0170 0.0211 0.0170	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0537}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP} / au}{0.0500}$ 0.0503 0.0590 0.0524	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00149 0.00203 0.00096 0.00100 H /au 0.00176 0.00176 0.00176 0.00129 0.00168		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHCl (c) NHO=C (a) NHO=C (c) NHO=C (c) NHO=C (d) NHO=C (d) NHN (a) NHN (b) H-bond NHCl (a) NHCl (b) NHCl (c)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.391 2.293 2.368 2.060	$\begin{array}{r} 222 & 7 \ \text{KS HO} \\ & 40.67 \\ & 59.83 \\ & 26.48 \\ & 118.16 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ & 14.77 \\ & 35.61 \\ & 37.11 \\ & 34.02 \\ & 34.52 \\ & 23.97 \\ & 15.36 \\ & 17.95 \\ & 1.72 \\ & 0.88 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ & 30.13 \\ & 30.96 \\ & 45.48 \\ & 32.97 \\ & 23.35 \end{array}$	0.0170 0.0243 0.0188 0.0464 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	$\frac{\nabla^2 \rho_{BCP} / au}{0.0485}$ 0.0624 0.0664 0.1330 $\frac{\nabla^2 \rho_{BCP} / au}{0.0357}$ 0.0534 0.0525 0.0512 0.0857 0.0728 0.0597 0.0727 0.0280 0.0248 $\frac{\nabla^2 \rho_{BCP} / au}{0.0500}$ 0.0503 0.0590 0.0524 0.0738	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00213 0.00213 0.00203 0.00096 0.00100 H /au 0.00176 0.00176 0.00176 0.00175		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHO=C (a) NHO=C (c) NHO=C (d) NHN (a) NHN (a) NHN (b) H-bond NHCl (a) NHCl (c) NHCl (c)	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.391 2.293 2.368 2.060 1.959	$\begin{array}{r} 222 & 7 \ \text{KS Ind} \\ & 40.67 \\ & 59.83 \\ & 26.48 \\ & 118.16 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ & 14.77 \\ & 35.61 \\ & 37.11 \\ & 34.02 \\ & 34.52 \\ & 23.97 \\ & 15.36 \\ & 17.95 \\ & 1.72 \\ & 0.88 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ \hline & 30.13 \\ & 30.96 \\ & 45.48 \\ & 32.97 \\ & 23.35 \\ & 32.80 \end{array}$	0.0170 0.0243 0.0188 0.0464 Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	$\begin{array}{c} & \nabla^2 \rho_{BCP} / au \\ \hline 0.0485 \\ \hline 0.0624 \\ \hline 0.0664 \\ \hline 0.1330 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.0357 \\ \hline 0.0534 \\ \hline 0.0525 \\ \hline 0.0512 \\ \hline 0.0512 \\ \hline 0.0857 \\ \hline 0.0728 \\ \hline 0.0728 \\ \hline 0.0728 \\ \hline 0.0727 \\ \hline 0.0280 \\ \hline 0.0727 \\ \hline 0.0280 \\ \hline 0.0248 \\ \hline \\ $	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00213 0.00213 0.00203 0.00096 0.00100 H /au 0.00176 0.00176 0.00176 0.00175 0.00200		
NHCl (a) NHCl (b) NHO=C (a) NHO=C (b) H-bond NHCl (a) NHCl (b) NHCl (c) NHCl (c) NHCl (d) NHO=C (c) NHO=C (c) NHO=C (d) NHN (a) NHN (a) NHN (b) H-bond NHCl (a) NHCl (c) NHCl (c) NHN	2.406 2.236 2.077 1.697 r/Å 2.594 2.356 2.361 2.386 1.971 2.033 2.155 2.058 2.646 2.783 r/Å 2.393 2.391 2.293 2.368 2.060 1.959 2.432	$\begin{array}{r} 222 & 7 \ \text{KS HO} \\ & 40.67 \\ & 59.83 \\ & 26.48 \\ & 118.16 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ \hline 14.77 \\ & 35.61 \\ & 37.11 \\ & 34.02 \\ & 34.52 \\ & 23.97 \\ & 15.36 \\ & 17.95 \\ & 1.72 \\ & 0.88 \end{array}$ $\begin{array}{r} 2.1.0 \\ \hline \Sigma E^{(2)} / \ \text{kJ mol}^{-1} \\ \hline & 30.13 \\ & 30.96 \\ & 45.48 \\ & 32.97 \\ & 23.35 \\ & 32.80 \\ & 8.08 \end{array}$	0.0170 0.0243 0.0188 0.0464 0_A p _{BCP} /au 0.0120 0.0191 0.0191 0.0184 0.0248 0.0208 0.0208 0.0205 0.0085 0.0085 0.0068 0_B p _{BCP} /au 0.0169 0.0170 0.0211 0.0179 0.0217 0.0252 0.0112	$\begin{array}{c} & \nabla^2 \rho_{BCP} / au \\ \hline 0.0485 \\ 0.0624 \\ 0.0664 \\ 0.1330 \\ \hline \\ \hline \\ 0.0357 \\ 0.0534 \\ 0.0525 \\ 0.0512 \\ 0.0857 \\ 0.0728 \\ 0.0728 \\ 0.0728 \\ 0.0727 \\ 0.0280 \\ 0.0248 \\ \hline \\ $	0.00174 0.00054 0.00219 -0.00047 H /au 0.00096 0.00154 0.00165 0.00160 0.00183 0.00213 0.00213 0.00213 0.00149 0.00203 0.00096 0.00100 H /au 0.00176 0.00176 0.00176 0.00176 0.00175 0.00200 0.00143		

Table S12. H-bond lengths (r), $E^{(2)}$ values and selected topological properties of the $\rho(r)$ at the BCPs for the individual H-bonds within the urea-chloride complexes

2.1.0 _C							
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.359	33.68	0.01874	0.054047	0.001643		
NHCl (b)	2.372	33.60	0.01807	0.0524	0.00172		
NHCl (c)	2.444	26.19	0.01600	0.0466	0.00172		
NHCl (d)	2.304	44.89	0.02064	0.0577	0.00140		
NHO=C (a)	1.995	26.95	0.02168	0.0857	0.00281		
NHO=C(b)	1.977	28.58	0.02298	0.0884	0.00262		
NHN	2.672	1.92	0.00708	0.0241	0.00099		
		3.0.0	_A	_			
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	∇ ² ρ _{BCP} /au	H /au		
NHCl (a)	2.415	28.20	0.0161	0.0486	0.00185		
NHCl (b)	2.471	21.88	0.0147	0.0441	0.00175		
NHCl(c)	2.468	22.68	0.0149	0.0446	0.00172		
NHCI(d)	2.453	22.68	0.0150	0.0454	0.00182		
NH = C1(f)	2.431	25.51	0.0150	0.0472	0.00182		
NH N	2.423	24.44	0.0158	0.0478	0.00182		
11111	2.915	0.50	0.0001	0.0217	0.00072		
U hand	/ Å	$\Sigma E^{(2)}/1, 1 \dots 1^{-1}$		$\nabla^2 \mathbf{a}$	U /a		
	F/A	<u>2E`7 KJ MOI</u>	ρ_{BCP}/au	$\frac{v \rho_{BCP}}{au}$	п /au		
NH Cl(b)	2.238	38.74 58.28	0.0244	0.0623	0.00032		
NH O=C(a)	1 959	30.46	0.0242	0.0023	0.00037		
NH $O=C(b)$	1.997	41.63	0.0233	0 1049	0.00237		
NHO=C(c)	1.981	28.79	0.0239	0.0863	0.00211		
NHO=C(d)	2.030	26.99	0.0230	0.0779	0.00170		
NHN	2.464	6.61	0.0105	0.0347	0.00147		
		2.1.0	D				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	OBCP/AU	$\nabla^2 \rho_{BCP} / a u$	H /au		
NHCl (a)	2.377	32.93	0.0176	0.0513	0.00170		
NHCl (b)	2.376	33.47	0.0177	0.0514	0.00170		
NHCl (c)	2.296	44.64	0.0209	0.0585	0.00133		
NHCl (d)	2.478	21.59	0.0142	0.0430	0.00180		
NHO=C (a)	2.018	33.43	0.0213	0.0760	0.00227		
NHO=C (b)	1.715	110.21	0.0442	0.1306	-0.00366		
	. •	1.2.0	_A	2			
H-bond	r/A	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl(a)	2.305	46.48	0.0211	0.0571	0.00124		
NHCI(0)	2.179	/2.9/	0.0277	0.0669	-0.00046		
NH = O = C (a)	2.510	8.08 21.67	0.0121	0.0392	0.00123		
NH = O = C(c)	1.896	46.32	0.0223	0.1042	0.00204		
NH $O=C(d)$	2.476	2.38	0.0200	0.0354	0.00114		
NHO=C(e)	2.066	22.47	0.0211	0.0710	0.00175		
NHN (a)	2.555	2.97	0.0103	0.0323	0.00110		
NHN (b)	2.211	19.46	0.0174	0.0545	0.00185		
		2.1.0	_E				
H-bond	r/Å	$\Sigma E^{(2)}/$ kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl (a)	2.352	35.02	0.0190	0.0542	0.00159		
NHCl (b)	2.362	35.40	0.0185	0.0531	0.00167		
NHCl(c)	2.342	39.12	0.0195	0.0548	0.00150		
NHCl(d)	2.504	21.34	0.0136	0.0409	0.00184		
NHO=C(a)	2.027	31.67	0.0209	0.0746	0.00226		
NHO=C (b)	1.709	112.84	0.0449	0.1315	-0.00394		
	. 9	1.1.1	_ <u>B</u>		/		
H-bond	r/A	$\Sigma E^{(2)}/\text{kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
NHCl(a)	2.260	54.10	0.0232	0.0606	0.00083		
NHCl(b)	2.253	55.44	0.0235	0.0612	0.00074		
NH = O - C (b)	2.023	24.00	0.0205	0.0806	0.00275		
NH = O = C(a)	1.913	20.20 27 10	0.0200	0.1013	0.00230		
NH O=C(d)	1.705	103 70	0.0230	0.0623	-0.00225		
1111U=C (u)	1./20	105.70	0.0720	0.1203	-0.00500		

1.1.1_C						
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
NHCl (a)	2.357	38.70	0.0188	0.0527	0.00159	
NHCl (b)	2.272	52.01	0.0225	0.0594	0.00097	
NHO=C (a)	2.008	30.42	0.0220	0.0795	0.00221	
NHO=C (b)	1.713	113.47	0.0447	0.1292	-0.00400	
NHO=C(c)	1.924	47.45	0.0266	0.0929	0.00182	
NHO=C (d)	1.744	92.51	0.0406	0.1286	-0.00192	
		1.2.0	_B			
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
NHCl (a)	2.299	47.95	0.0212	0.0575	0.00124	
NHCl (b)	2.299	47.95	0.0212	0.0575	0.00124	
NHO=C(a)	2.099	22.93	0.0178	0.0628	0.00211	
NHO=C (b)	2.097	23.01	0.0179	0.0630	0.00211	
NHO=C(c)	1.722	95.90	0.0437	0.1308	-0.00342	
NHO=C (d)	1.722	95.98	0.0436	0.1308	-0.00341	

5.5 Selected Molecular Orbitals

Figure S10. HOMO-1 of (a) $[urea.Cl]^{-}(1.0.0 \text{ A})$, (b) $[urea_2.Cl]^{-}(2.0.0 \text{ A})$ and (c) $[urea_3.Cl]^{-}(3.0.0 \text{ A})$ generated at the 0.02 au isosurface.

6. Choline – Urea Pairs

6.1 Relative Energies

 Table S13. Absolute and relative electronic energies of the choline urea pairs: without any corrections, with ZPE corrections and with both ZPE and CP corrections. Absolute and relative Gibbs free energies of the choline urea pairs.

Ion Pair	E /au	ΔE _{rel} /kJ mol ⁻¹	E+ZPE /au	ΔE _{rel} (with ZPE correction) /kJ mol ⁻¹	BSSE /kJ mol ⁻¹	ΔE _{rel} (with ZPE + CP correction) /kJ mol ⁻¹	G /au	ΔG _{rel} /kJ mol ⁻¹
A_UChG	-554.207244	0.000	-553.945257	0.000	2.674	0.000	-553.988192	0.85
B_UChG	-554.204551	7.070	-553.943473	4.683	1.489	3.499	-553.988003	1.35
C_UChG	-554.204543	7.091	-553.943287	5.172	1.769	4.267	-553.988517	0.00
D_UChG	-554.203266	10.444	-553.942222	7.968	1.258	6.552	-553.987777	1.94
E_UChG	-554.203337	10.258	-553.942235	7.935	1.517	6.778	-553.986537	5.20
F_UChG	-554.202443	12.604	-553.940014	13.765	2.921	14.012	-553.981183	19.26
A_UChT	-554.200689	17.209	-553.939064	16.258	2.804	16.389	-553.981385	18.73
B_UChT	-554.197555	25.437	-553.936973	21.748	1.276	20.350	-553.983119	14.17
C_UCht	-554.199468	20.416	-553.936970	21.757	2.807	21.891	-553.979565	23.50
D_UChT	-554.196133	29.172	-553.935585	25.394	1.737	24.458	-553.980414	21.27

6.2 H-Bond Data

Table S14. H-bond lengths (r), $E^{(2)}$ values and selected topological properties of the $\rho(r)$ at the BCPs for the individual H-bonds within the choline-urea pair

A_UChG						
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
Intra CHO(H)	2.474	-	0.0118	0.0430	0.00165	
CHO=(a)	2.298	6.15	0.0094	0.0338	0.00132	
CHO=(b)	2.434	3.89	0.0119	0.0426	0.00168	
OH0=	1.683	114.39	0.0489	0.1420	-0.00565	
NHO(H)	2.477	3.72	0.0092	0.0373	0.00162	
		B_UC	ChG			
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
Intra CHO(H)	2.229	4.77	0.0159	0.0605	0.00228	
CHO=(a)	2.279	9.71	0.0134	0.0466	0.00171	
CHO=(b)	2.319	5.73	0.0123	0.0425	0.00154	
CHO=(c)	2.245	9.04	0.0144	0.0520	0.00195	
		C_UC	ChG			
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
Intra CHO(H)	2.179	8.83	0.0184	0.0673	0.00226	
OHO=	1.648	124.81	0.0497	0.1510	-0.00579	
		D_UC	ChG			
H-bond	r/Å	$\Sigma E^{(2)}$ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
Intra CHO(H)	2.240	4.44	0.0157	0.0593	0.00221	
CHO=(a)	2.297	8.79	0.0129	0.0443	0.00160	
CHO=(b)	2.241	8.12	0.0137	0.0502	0.00120	
CHO=(c)	2.239	10.38	0.0141	0.0507	0.00194	
		E_UC	ChG			
H-bond	r/Å	$\Sigma E^{(2)}/$ kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au	
Intra CHO(H)	2.237	4.31	0.0158	0.0598	0.00223	
CHO=(a)	2.286	8.08	0.0132	0.0456	0.00165	
CHO=(b)	2.258	9.83	0.0135	0.0485	0.00188	
CHO=(c)	2.238	9.46	0.0142	0.0513	0.00194	

F_UChG							
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP}$ /au	H /au		
Intra CHO(H)	2.458	-	0.0128	0.0465	0.00154		
CHO=(a)	2.384	4.81	0.0109	0.0348	0.00113		
CHO=(b)	2.240	8.91	0.0130	0.0493	0.00210		
CHO=(c)	2.440	4.60	0.0116	0.0358	0.00089		
OHN	2.165	20.08	0.0192	0.0587	0.00152		
		A_U	ChT				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
CHO=(a)	2.185	10.33	0.0157	0.0581	0.00222		
CHO=(b)	2.480	2.68	0.0086	0.0307	0.00116		
CHO=(c)	2.041	25.65	0.0238	0.0817	0.00205		
NHO(H)	2.136	19.71	0.0164	0.0583	0.00206		
		B_U(ChT				
H-bond	r/Å	Σ <i>E</i> ⁽²⁾ / kJ mol ⁻¹	ρ _{BCP} /au	$\nabla^2 \rho_{BCP}$ /au	H /au		
CHO=(a)	2.248	10.79	0.0141	0.0497	0.00186		
CHO=(b)	2.249	9.37	0.0139	0.0496	0.00187		
CHO=(c)	2.246	8.45	0.0138	0.0499	0.00191		
		C_U	ChT				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
CHO=(a)	2.559	1.76	0.0082	0.0268	0.00089		
CHO=(b)	2.464	1.51	0.0099	0.0385	0.00148		
OHO=	1.879	45.06	0.0320	0.1043	0.00001		
NHO(H)	2.403	5.65	0.0105	0.0386	0.00153		
		D_U	ChT				
H-bond	r/Å	$\Sigma E^{(2)}/ \text{ kJ mol}^{-1}$	ρ _{BCP} /au	$\nabla^2 \rho_{BCP} / au$	H /au		
CHO=(a)	2.204	13.43	0.0151	0.0511	0.00208		
CHO=(b)	2.204	13.18	0.0152	0.0545	0.00207		
CHO=(c)	2.641	0.50	0.0082	0.0329	0.00137		
CHO=(d)	2.642	0.46	0.0082	0.0330	0.00138		

7. Comparison of H-bonding and Pair Interactions

8. Validation Calculations

		MP2/aug	MP2/aug-cc-pVTZ			CCSD(T)/aug-cc-pVDZ	
System	E /au	ΔE _{rel} /kJ mol ⁻¹	BSSE /kJ mol ⁻¹	ΔE _{rel} (with CP correction) /kJ mol ⁻¹	E /au	ΔE _{rel} /kJ mol ⁻¹	
Isolated							
Choline (gauche)	-328.184071	-	-	-	-327.891381	-	
Urea (C ₂)	-224.977728	-	-	-	-224.771749	-	
Choline chl	oride						
A ChG	-788.165177	0.00	18.98	0.00	-787.798335	0.00	
B ChG	-788.164503	1.77	18.15	0.94	-787.797810	1.38	
C_ChG	-788.158896	16.49	15.62	13.14	-787.792925	14.20	
Urea dimer							
ribbon	-449.982105	-	14.00	-	-449.567604	-	
Urea chlori	de clusters						
1.0.0 A	-684.839049	-	-	-	-684.560185	-	
2.0.0_A	-909.853979	0.00	20.54	0.00	-909.367242	0.00	
1.1.0_A	-909.849938	10.61	22.25	12.32	-909.362771	11.74	
3.0.0_A	-1134.863092	-	32.35	-	-	-	
Urea cholin	e pairs						
A UChG	-553.197093	0.00	16.01	0.00	-552.696302	0.00	
B_UChG	-553.194651	6.41	11.25	1.65	-552.694269	5.34	

 Table S15. Single point energies of selected structures computed at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVDZ levels of theory (using B3LYP-D2/6-311++G(d,p) geometries).