Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

for

Understanding of the Formation of Shallow Level Defects from the Intrinsic Defects of Lead Tri-Halide Perovskites

Jongseob Kim†, Choong-Heui Chung‡, and Ki-Ha Hong*,‡

†Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd. Yongin-Si, Gyeonggi-Do, 446-712, Korea

‡ Department of Materials Science and Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-Gu, Daejeon, 34014, Korea

Email: kiha.hong@hanbat.ac.kr

Table S1. Lattice structures (calculated lattice structures with the GGA exchange correlation), band gaps, and formation energies of the halide vacancy ($E_F(V_{Halide})$) and the Pb ($E_F(V_{Pb})$) of methylammonium lead trihalides. In this study, we used pseudo-tetragonal unit lattice structures for each perovskite.

	MAPbI ₃	MAPbBr ₃	MAPbCl ₃
Lattice Constants	a=9.08 Å b=9.02Å c=12.77 Å	a=8.41 Å b=8.35 Å c=11.86 Å	a=8.14 Å b=8.00 Å c=11.28 Å
Band gap GGA (eV)	1.87	2.26	2.70
$E_F(V_{Halide})$ (eV)	2.21	2.93	3.28
$E_F(V_{Pb})$ (eV)	2.69	3.37	3.74