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1. Workflow for the thermal transport properties calculated in this paper

The macro/micro thermal transport properties such as lattice thermal conductivity, phonon 

dispersion, group velocities and phonon relaxation time are determined by harmonic (second-

order) and anharmonic (third-order) interatomic force constants (IFCs), which can be obtained 

from ab-initio calculations. Such calculations are carried out with the Vienna Ab-initio 

Simulation Package (VASP). Once the harmonic and anharmonic IFCs are obtained, the thermal 

transport properties can be calculated by solving the phonon Boltzmann transport equation (BTE) 
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as implemented in the ShengBTE code1. The detailed information on the workflow can be found 

in the Fig. S1. 

Fig. S1. Workflow for the thermal transport properties calculations using density functional 

theory combining phonon BTE method.

From the solution of the BTE, the lattice thermal conductivity could be expressed as:
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where  is the crystal volume,  the group velocity vector . The  is the mode 𝑉 �⃗� �⃗�= 𝑑𝜔/𝑑�⃗� 𝐶𝜆

specific heat of system:
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where  .  When the phonon-phonon scattering and isotope scattering are considered, 𝑥= ℏ𝜔/𝑘𝐵𝑇

the phonon lifetime  can be obtained from the Matthiessen rule 2: 𝜏𝜆

                                                        (S3)
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The phonon-phonon lifetime for a three-phonon scattering process is computed as the inversion 

of the intrinsic scattering rate 1:

                      (S4)
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where  and   denote the second and third phonon mode that scatter with phonon .  and 𝜆' 𝜆'' 𝜆 Γ +
𝜆𝜆'𝜆''

 are the intrinsic three-phonon scattering rates for absorption processes  and 
Γ ‒

𝜆𝜆'𝜆'' 𝜆+ 𝜆'→𝜆''

emission processes , respectively.  For more details about the BTE method we refer the 𝜆→𝜆' + 𝜆''

reader to Refs. 1-4.

2. Lagrangian multiplier method used in ShengBTE for enforcing the translational 

invariance constraint of anharmonic force constants
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Owning to the fact that the system energy does not change when the system as whole is 

displaced, one have the sum rules for third-order IFCs:

                                                            (S5)
∑

𝑘

Φ𝛼𝛽𝛾
𝑖𝑗𝑘 = 0

However the directly calculated force constants from ab-initio package do not exactly 

satisfy all the sum rules. Therefore, the IFCs have to be enforced by changing the calculated 

value slightly since the sum rules are crucial to obtain the correct scattering rates especially the 

low frequencies. These can be done by solving an optimization problem. The idea is to add a 

compensation  to each independent nonzero element , where i ranges from 1 to the total 𝑑𝑖 𝜙𝑖

number of independent nonzero elements, such that the sum rule condition can be satisfied. In 

order to guarantee that the compensation is small, some additional constraints need to be 

considered. The ShengBTE code minimize the sum of the squares of the compensation for each 

independent nonzero element, and the enforcement of sum rules turns out to be a minimization of 

a quadratic polynomial subject to constraints, which can  be easily done by using the Lagrangian 

multiplier method 5, 6. 

Since all the IFCs can be deduced from the independent elements, the sums can be written 

in terms of these elements as: 

                                                            (S6)
∑
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where  are integers in the case of a cubic system, and j ranges from 1 to the total number of 𝐴𝑖𝑗

independent sums. Since the sum rules have to be satisfied, the constraints on the compensation 

are:
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                                                   (S7)
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The function to be minimized is:

                                                        (S8)
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After introducing the Lagrangian multiplier , the expression of  in terms of  could be  𝜆𝑖 𝑑𝑖 𝜆𝑖

obtained from

                                                     (S9)
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from which it follows:
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Substituting this relation into Eq. (S7), one have 
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with ,   can be obtained by solving the linear equation arrays, and  is further 
𝐶𝑖𝑗=∑

𝑚
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𝜆𝑗 𝑑𝑗

obtained by using Eq. (S10), When  is added to the independent IFC elements , the sum rules 𝑑𝑗 𝜙𝑖

are completely satisfied and the compensations are minimized. 
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3. Electronic band structure and density of state (DOS) of TaAs

In order to verify the thermal transport in TaAs is dominated by the phonons. We calculate 

the electronic band structure and the corresponding density of state (DOS). The results is 

presented in Fig. S2. It can be seen that the band structure agrees very well with the previous 

theoretical work 7.  The DOS around the Fermi level is quite small 8 and implies that the 

electronic contributed thermal conductivity in TaAs is negligible.   

Fig. S2 (color online) The electronic energy band structure of TaAs along several high symmetry 

directions and the corresponding density of state (DOS). 

4. Self-consistent test of the Grüneisen parameters of TaAs

In order to verify the accuracy of the third-order anharmonic IFCs, we calculate the mode 

specific Grüneisen parameters ( ) which reflect the anharmonicity of a crystal and can be 𝛾𝜆

obtained from the anharmonic IFCs. Owning to the lacking of experimental data of TaAs, we 

perform a self-consistent test via changing the interaction cutoff of third-order force constant as 



7

shown in Fig. S3. It can be seen that the Grüneisen parameters vary obviously for the 

anharmonic IFCs when the interaction cutoff is short. However, the Grüneisen parameters stay 

almost unchanged for the interaction cutoff larger than fourth nearest neighbors, corresponding 

to 4.7 Å. From the mode weighted accumulative Grüneisen parameter (MWGP) defined as 

, we can see this behavior more clearly (see the inset of Fig. S3). That is to 
𝛾=∑

𝜆

𝐶𝜆𝛾𝜆/∑
𝜆

𝐶𝜆

say, the Grüneisen parameters of TaAs are convergent when the interaction cutoff of IFCs is 

larger than fourth nearest neighbors, which could qualitatively characterize the accuracy of 

anharmonic force constants. Taking the computational accuracy and time-consuming of 

calculation into consideration, the sixth nearest neighbors are chosen as the interaction cutoff for 

the third-order IFCs in the following works.
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Fig. S3 (color online) Frequency dependent Grüneisen parameter of TaAs with different interaction 

cutoff of third-order force constants. (Inset) The mode weighted accumulative Grüneisen 

parameter(MWGP) with respect to the interaction cutoff.
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